
Summer school on semisupervised learning

Variational learning part 1

Deep learning

Ole Winther

Dept for Applied Mathematics and Computer Science
Technical University of Denmark (DTU)

August 10, 2016

Ole Winther - a bit about myself

Data science - adding domain knowledge

Objectives of talk

• Neural network is
used as building
blocks in our
semi-supervised
models.

• A bit about deep
learning and
statistical artificial
intelligence?

• How does it work?
• The feed-forward

neural network
(FFNN)

What is in it for you - if you pay attention to the end
• Learn about a probabilistic

approach to
• density modelling:

p(x)

• classification:

p(y |x)

• with deep neural networks.

• Latent variable z models:
p(x |z)p(z)

• Variational learning
• State-of-the-art

performance
semi-supervised learning
image benchmarks. . .

What is in it for you - if you pay attention to the end
• Learn about a probabilistic

approach to
• density modelling:

p(x)

• classification:

p(y |x)

• with deep neural networks.
• Latent variable z models:

p(x |z)p(z)

• Variational learning
• State-of-the-art

performance
semi-supervised learning
image benchmarks. . .

What is in it for you - if you pay attention to the end
• Learn about a probabilistic

approach to
• density modelling:

p(x)

• classification:

p(y |x)

• with deep neural networks.
• Latent variable z models:

p(x |z)p(z)
• Variational learning

• State-of-the-art
performance
semi-supervised learning
image benchmarks. . .

What is in it for you - if you pay attention to the end
• Learn about a probabilistic

approach to
• density modelling:

p(x)

• classification:

p(y |x)

• with deep neural networks.
• Latent variable z models:

p(x |z)p(z)
• Variational learning
• State-of-the-art

performance
semi-supervised learning
image benchmarks. . .

Are we heading towards the singularity?

kurzweilai.net

• Elon Musk at MIT AeroAstro Symp:
• If I were to guess at what our

biggest existential threat is, it’s
probably that...

• With artificial intelligence, we are
summoning the demon..

• Inofficial quotes (email to friend):
• The risk of something seriously

dangerous happening is in the five
year timeframe. 10 years at most,

• Unless you have direct exposure to
groups like Deepmind, you have no
idea how fast — it is growing at a
pace close to exponential.

kurzweilai.net
http://www.computerworld.com/article/2840815/ai-researchers-say-elon-musks-fears-not-completely-crazy.html
http://mashable.com/2014/11/17/elon-musk-singularity/

Are we heading towards the singularity?

kurzweilai.net

• Elon Musk at MIT AeroAstro Symp:
• If I were to guess at what our

biggest existential threat is, it’s
probably that...

• With artificial intelligence, we are
summoning the demon..

• Inofficial quotes (email to friend):
• The risk of something seriously

dangerous happening is in the five
year timeframe. 10 years at most,

• Unless you have direct exposure to
groups like Deepmind, you have no
idea how fast — it is growing at a
pace close to exponential.

kurzweilai.net
http://www.computerworld.com/article/2840815/ai-researchers-say-elon-musks-fears-not-completely-crazy.html
http://mashable.com/2014/11/17/elon-musk-singularity/

Growth in computer power

Major areas in AI

• Speech recognition
• Image classification
• Machine translation
• Question-answering
• Self-driving vehicles
• Dialogue systems
• General

unsupervised
learning

Major areas in AI

• Speech recognition
• Image classification
• Machine translation
• Question-answering
• Self-driving vehicles
• Dialogue systems
• General

unsupervised
learning

Part 1:
The deep learning

revolution

Achilles’ heel of traditional AI:
Perception in natural environment

xkcd.com/1425

Many thanks to Tapani Raiko for sharing slides!

Speech recognition breakthrough

Plot from Yoshua Bengio

Imagenet classification challenge

Annual competition in computer vision.

Imagenet classification challenge

Krizhevsky et al. (2012) won with huge margin
(16.4% error compared to 26.2%) by deep learning.
Soon everyone started using deep learning and GPUs.

Modifying visual features (Larsen et al., 2015)

Representation learning

Traditional way:
Data→ Feature engineering→ Machine learning

• Feature selection
• Feature extraction (e.g. PCA)
• Feature construction (e.g. SIFT)

Deep learning way:
Data→ End-to-end learning

Y LeCun
Deep Learning = Learning Hierarchical Representations

It's deep if it has more than one stage of non-linear feature transformation

Trainable
Classifier

Low-Level
Feature

Mid-Level
Feature

High-Level
Feature

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

• Review article, May 2015:

• Book: M.Nielsen, Neural networks and deep learning
• Book, draft available online:

• Portal: deeplearning.net
• DTU fall term master-level course: 02456 Deep learning,

http://neuralnetworksanddeeplearning.com/
deeplearning.net

Part 2:
Neural networks

Neural networks (NNs)

• Feedforward neural networks (FFNNs)
• Convolutional neural networks (CNNs)
• Recurrent Neural Networks (RNNs)
• Auto-encoders (AE)

Feed forward neural networks

x0

x1

xD

z0

z1

zM

y1

yK

w
(1)
MD w

(2)
KM

w
(2)
10

hidden units

inputs outputs

Neural network mapping

• Compute weighted sum of inputs:

D∑
i=1

w (1)
ji xi + w (1)

j0 =
D∑

i=0

w (1)
ji xi

• Output k two-layer network:

h(2)
k (x,w) = f2

 M∑
j=0

w (2)
kj f1

(
D∑

i=0

w (1)
ji xi

)
• f1 and f2 hidden unit activation

functions

x0

x1

xD

z0

z1

zM

y1

yK

w
(1)
MD w

(2)
KM

w
(2)
10

hidden units

inputs outputs

Non-linearity and training

• Linear activation functions will give a
linear network.

• Logistic function σ(a) = 1
1+e−a

• Hyperbolic tangent tanh(a) = ea−e−a

ea+e−a

• Rectified linear relu(a) = max(0,a)

• Supervised learning
• Labeled training set

D = {(xi , yi)|i = 1, . . . ,n} .

• Input xi and output yi .
• Minimize training error by (stochastic)

gradient descent

Non-linearity and training

• Linear activation functions will give a
linear network.

• Logistic function σ(a) = 1
1+e−a

• Hyperbolic tangent tanh(a) = ea−e−a

ea+e−a

• Rectified linear relu(a) = max(0,a)

• Supervised learning
• Labeled training set

D = {(xi , yi)|i = 1, . . . ,n} .

• Input xi and output yi .

• Minimize training error by (stochastic)
gradient descent

Non-linearity and training

• Linear activation functions will give a
linear network.

• Logistic function σ(a) = 1
1+e−a

• Hyperbolic tangent tanh(a) = ea−e−a

ea+e−a

• Rectified linear relu(a) = max(0,a)

• Supervised learning
• Labeled training set

D = {(xi , yi)|i = 1, . . . ,n} .

• Input xi and output yi .
• Minimize training error by (stochastic)

gradient descent

Non-linearity and training

• Linear activation functions will give a
linear network.

• Logistic function σ(a) = 1
1+e−a

• Hyperbolic tangent tanh(a) = ea−e−a

ea+e−a

• Rectified linear relu(a) = max(0,a)

• Supervised learning
• Labeled training set

D = {(xi , yi)|i = 1, . . . ,n} .

• Input xi and output yi .
• Minimize training error by (stochastic)

gradient descent

Non-linearity and training

• Linear activation functions will give a
linear network.

• Logistic function σ(a) = 1
1+e−a

• Hyperbolic tangent tanh(a) = ea−e−a

ea+e−a

• Rectified linear relu(a) = max(0,a)

• Supervised learning
• Labeled training set

D = {(xi , yi)|i = 1, . . . ,n} .

• Input xi and output yi .
• Minimize training error by (stochastic)

gradient descent

Overfitting!

Example: MNIST handwritten digits

Train a network to classify 28× 28 images.
Data: 60000 input images xn and labels yn, n = 1, . . . ,60k .
Example model gives around 1.2% test error.

Example Network

10 classes

784 pixels

weights 10x144

144 units

225 units

weights 225x784

hidden 2

hidden 1

input x

output y

weights 144x225

h(3) = softmax(W(3)h(2) + b(3))

h(2) = relu(W(2)h(1) + b(2))

h(1) = relu(W(1)x + b(1))

softmax(z)i =
exp(zi)∑
j exp(zj)

relu(z) = max(0, z)

On activation functions

• relu(z) = max(0, z) is replacing old sigmoid and tanh.
• Note that identity function would lead into:

h(2) = W(2)h(1) + b(2)

= W(2)(W(1)x + b(1)) + b(2)

= (W(2)W(1))x + (W(2)b(1) + b(2))

= W′x + b′

Weight matrix W(1) size 225× 784

Signals x→ h(1) → h(2) → h(3)

x h(1)

h(2) y

On sparsity

h(1) h(2)

How often hi > 0? Histogram over units i .
(Sometimes units become completely dead.)

Part 3:
Neural network training

Training criterion

Find parameters

θ = {W(L),b(L)}

that minimize expected
negative log-likelihood:

C = Edata [− log P(y|x,θ)] .

Learning becomes optimiza-
tion.

Say we have a true distribution P(y | x) and we
would like to find a model Q(y | x, θ) that matches
P. Let us study how maximizing expected negative
log-likelihood C = EP [− log Q] works as a learning
criterion.

θ
∗ = argmin

θ
C(θ) = argmin

θ
EP(y|x) [− log Q(y | x, θ)] .

Let us assume that there is a θ∗ for which
Q(y|x, θ∗) = P(y|x). We can note that the gra-
dient at θ∗

∂

∂θ
EP(y|x)

[
log Q(y | x, θ∗)

]
= EP(y|x)

[
∂

∂θ
log Q(y | x, θ∗)

]

=

∫
P(y | x)

∂
∂θ

Q(y | x, θ∗)

Q(y | x, θ∗)
dy

=

∫
∂

∂θ
Q(y | x, θ∗)dy

=
∂

∂θ

∫
Q(y | x, θ∗)dy =

∂

∂θ
1 = 0

becomes zero, that is, the learning converges when
Q = P. Therefore the expected log-likelihood is a
reasonable training criterion.

Classification - one hot encoding and cross-entropy
• MNIST, output labels: 0,1, . . . ,9.
• Convenient to use a sparse one hot encoding:

0→ y = (1,0,0,0,0,0,0,0,0,0)T

1→ y = (0,1,0,0,0,0,0,0,0,0)T

2→ y = (0,0,1,0,0,0,0,0,0,0)T

· · · ·
9→ y = (0,0,0,0,0,0,0,0,0,1)T

• Output
h(3) = softmax(W(3)h(2) + b(3))

interpreted as class(-conditional) probability.
• Cross-entropy cost - sum over data and label

C = −
N∑

n=1

K∑
k=1

ynk log h(3)
nk

Gradient descent

• Simple algorithm for minimizing the training criterion C.

• Gradient g = ∇θC(θ) =


∂C
∂θ1
...
∂C
∂θn


• Iterate θk+1 = θk − ηkgk

• Notation: iteration k , stepsize (or learning rate) ηk

Backpropagation (Linnainmaa, 1970)

Computing gradients in a network.

input x

1 outputoutput y

hidden h 1 unit

1 input

1 weight

1 weight

• First with scalars. Use chain rule:

∂C
∂w2

=
∂C
∂h(2)

∂h(2)

∂w2

∂C
∂w1

=
∂C
∂h(2)

∂h(2)

∂h(1)
∂h(1)

∂w1

• Chain rule: ∂h(2)

∂x = ∂h(2)

∂h(1)
∂h(1)

∂x

Backpropagation

10 classes

784 pixels

weights 10x144

144 units

225 units

weights 225x784

hidden 2

hidden 1

input x

output y

weights 144x225

• Multi-dimensional:

∂C

∂W (3)
ij

=
∂C

∂h(3)
i

∂h(3)
i

∂W (3)
ij

∂C

∂W (2)
jk

=
∑

i

∂C

∂h(3)
i

∂h(3)
i

∂h(2)
j

∂h(2)
j

∂W (2)
jk

∂C

∂W (1)
kl

=
∑

j

∑
i

∂C

∂h(3)
i

∂h(3)
i

∂h(2)
j

∂h(2)
j

∂h(1)
k

∂h(1)
k

∂W (1)
kl

• How many paths - for two hidden
layers

• as a function of depth?

Backpropagation

10 classes

784 pixels

weights 10x144

144 units

225 units

weights 225x784

hidden 2

hidden 1

input x

output y

weights 144x225

• Multi-dimensional:

∂C

∂W (3)
ij

=
∂C

∂h(3)
i

∂h(3)
i

∂W (3)
ij

∂C

∂W (2)
jk

=
∑

i

∂C

∂h(3)
i

∂h(3)
i

∂h(2)
j

∂h(2)
j

∂W (2)
jk

∂C

∂W (1)
kl

=
∑

j

∑
i

∂C

∂h(3)
i

∂h(3)
i

∂h(2)
j

∂h(2)
j

∂h(1)
k

∂h(1)
k

∂W (1)
kl

• How many paths - for two hidden
layers

• as a function of depth?

Backpropagation - dynamic programming

10 classes

784 pixels

weights 10x144

144 units

225 units

weights 225x784

hidden 2

hidden 1

input x

output y

weights 144x225

• Store intermediate results

∂C

∂h(2)
j

=
∑

i

∂C

∂h(3)
i

∂h(3)
i

∂h(2)
j

∂C

∂h(1)
k

=
∑

j

∂C

∂h(2)
j

∂h(2)
j

∂h(1)
k

• In general

∂C

∂h(l)
j

=
∑

i

∂C

∂h(l+1)
i

∂h(l+1)
i

∂h(l)
j

• and gradient:

∂C

∂W (l)
ij

=
∂C

∂h(l)
i

∂h(l)
i

∂W (l)
ij

Tiny Example

input x

1 outputoutput y

hidden h 1 unit

1 input

1 weight

1 weight

• y ∼ N (w2h,1)
• h = w1x
• “Data set”: {x = 1, y = 1.5}
• Some weight decay.
• C = (w1w2−1.5)2+0.04(w2

1+w2
2)

Gradient g = ∇θC(θ) =


∂C
∂θ1
...
∂C
∂θn



Gradient descent, ηk = 0.25 (→ too slow)

θk+1 = θk − ηkgk , iteration k , stepsize (or learning rate) ηk

Gradient descent, ηk = 0.35 (→ oscillates)

θk+1 = θk − ηkgk

Newton’s method, too complex

θk+1 = θk − H−1
k gk , H =


∂2C
∂θ1∂θ1

· · · ∂2C
∂θ1∂θn

...
. . .

...
∂2C
∂θn∂θ1

· · · ∂2C
∂θn∂θn


• Less oscillations.
• Points to the wrong

direction in places
(solvable).

• Computational
complexity: #params3

(prohibitive).
• There are

approximations, but not
very popular.

Momentum method (Polyak, 1964)

mk+1 = αmk − ηkgk
θk+1 = θk + mk+1

Momentum method with noisy gradient

Mini-batch training

• No need to have an accurate estimate of g.
• Use only a small batch of training data at once.
• Leads into many updates per epoch (=seeing data once).
• E.g. 600 updates with 100 samples per epoch in MNIST.

• Important to anneal stepsize ηk towards the end, e.g.

• Adaptation of ηk possible (Adam, Adagrad, Adadelta).

Mini-batch training

• No need to have an accurate estimate of g.
• Use only a small batch of training data at once.
• Leads into many updates per epoch (=seeing data once).
• E.g. 600 updates with 100 samples per epoch in MNIST.
• Important to anneal stepsize ηk towards the end, e.g.

• Adaptation of ηk possible (Adam, Adagrad, Adadelta).

W(1) after epoch 1

W(1) after epoch 2

W(1) after epoch 3

W(1) after epoch 4

W(1) after epoch 5

W(1) after epoch 10

W(1) after epoch 50 (final)

References

• LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton, Deep learning, Nature 521.7553 (2015): 436-444.

• Mnih, Volodymyr, et al., Human-level control through deep reinforcement learning, Nature 518.7540 (2015):
529-533.

• Alipanahi, Babak, et al., Predicting the sequence specificities of DNA-and RNA-binding proteins by deep
learning, Nature biotechnology (2015).

• Silver, David, et al., Mastering the game of Go with deep neural networks and tree search, Nature 529.7587
(2016): 484-489.

• Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhutdinov, R., Zemel, R., & Bengio, Y. (2015), Show,
attend and tell: Neural image caption generation with visual attention. arXiv preprint arXiv:1502.03044.

• Mansimov, Elman, et al., Generating Images from Captions with Attention. arXiv preprint arXiv:1511.02793
(2015).

• Larsen, Anders Boesen Lindbo, Soren Kaae Sonderby, and Ole Winther. Autoencoding beyond pixels using
a learned similarity metric. arXiv preprint arXiv:1512.09300 (2015).

• Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. Book in preparation for MIT Press,
http://goodfeli.github.io/dlbook/, 2016.

• Michael Nielsen, Neural Networks and Deep Learning,
http://neuralnetworksanddeeplearning.com/

• Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton, ImageNet Classification with Deep Convolutional,
NIPS, 2012. Neural Networks,

http://goodfeli.github.io/dlbook/
http://neuralnetworksanddeeplearning.com/

Thanks!
Ole Winther

	Are we heading towards the singularity?
	Optimization

