Summer school on semisupervised learning
Variational learning part 1

Deep learning

Ole Winther

Dept for Applied Mathematics and Computer Science
Technical University of Denmark (DTU)

oy

o
o>

August 10, 2016



Ole Winther - a bit about myself
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Data science - adding domain knowledge
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Objectives of talk

e Neural network is
used as building
blocks in our
semi-supervised
models.

e A bit about deep
learning and
statistical artificial
intelligence?

e How does it work?

e The feed-forward

neural network
(FFNN)




What is in it for you - if you pay attention to the end

e Learn about a probabilistic
approach to

e density modelling:
p(x)

o classification:
p(y|x)

e with deep neural networks.
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What is in it for you - if you pay attention to the end

e Learn about a probabilistic
approach to

e density modelling:

p(x)
e classification:

SVHN NORB

p(y[x)

18.79% (+0.06)

2463% 9.88%

e with deep neural networks.

2286% 10.06% (0.05)

e Latent variable z models:
p(x|z)p(2)
e Variational learning
e State-of-the-art
performance

semi-supervised learning
image benchmarks. ..

Skip Deep Generative Model 1.32% (007)  16.61% (£0.24)  9.40% (£0.04)




Are we heading towards the singularity?

kurzweilai.net


kurzweilai.net
http://www.computerworld.com/article/2840815/ai-researchers-say-elon-musks-fears-not-completely-crazy.html
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Are we heading towards the singularity?

e Elon Musk at MIT AeroAstro Symp:

o |If | were to guess at what our
biggest existential threat is, it’s
probably that...

o With artificial intelligence, we are
summoning the demon..

« Inofficial quotes (email to friend):

e The risk of something seriously
dangerous happening is in the five
year timeframe. 10 years at most,

¢ Unless you have direct exposure to
groups like Deepmind, you have no
idea how fast — it is growing at a
pace close to exponential.
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Growth in computer power
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Major areas in Al

e Speech recognition
¢ Image classification
e Machine translation
¢ Question-answering
e Self-driving vehicles
¢ Dialogue systems

e General
unsupervised
learning




Major areas in Al

Speech recognition
Image classification

General
unsupervised
learning
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Part 1:

The deep learning
revolution



Achilles’ heel of traditional Al:
Perception in natural environment

... AND CHECK UHETHER
THE PHOTD 1S OF A BIRD.

T NEED A RESEARCH

K TEAM AND FIVE YEARS.
gt

xkecd.com/1425

Many thanks to Tapani Raiko for sharing slides!



Speech recognition breakthrough

100%,

10%

4%

2%

1%

According to Microsoft:

Deep learning

& Microsoft

Translator

1990

2000 2010

Plot from Yoshua Bengio



Imagenet classification challenge

Annual competition in computer vision.



Imagenet classification challenge

ILSVRC top-5 error on ImageNet

2010 201 2012 2013 2014 Human  ArXiv 2015

Krizhevsky et al. (2012) won with huge margin
(16.4% error compared to 26.2%) by deep learning.
Soon everyone started using deep learning and GPUs.



Modifying visual features (Larsen et al., 2015)




Representation learning

Traditional way:

Data — Feature engineering — Machine learning
o Feature selection
e Feature extraction (e.g. PCA)
e Feature construction (e.g. SIFT)

Deep learning way:

Data — End-to-end learning



Deep.Learning =,Learning Hierarchical Representations
| Y LeCun

@ It's deep if it has more than one stage of non-linear feature transformation

Low-Level| |Mid-Level| [High-Level Trainable
R R N
Feature Feature Feature Classifier
4 A\

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]



¢ Review article, May 2015:

Deep learning nature

Yann LeCun'?, Yoshua Bengio® & Geoffrey Hinton**

Deep learning allows computational models that are iposed of multiple pr ing layers to learn representations of
data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech rec-
ognition, visual object recognition, object detection and many other d ins such as drug di: yand ics. Deep
learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine
should change its internal parameters that are used to compute the representation in each layer from the representation in
the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and
audio, whereas recurrent nets have shone light on sequential data such as text and speech.

e Book: M.Nielsen, Neural networks and deep learning
e Book, draft available online:

Deep Learning
An MIT Press book in preparation

’ -
@‘Bengio, Tan Goodfellow and Aaron Courville ‘
- a‘ e P — =

e Portal: deeplearning.net
e DTU fall term master-level course: 02456 Deep learning,


http://neuralnetworksanddeeplearning.com/
deeplearning.net

Part 2:
Neural networks



Neural networks (NNs)

e Feedforward neural networks (FFNNs)
e Convolutional neural networks (CNNs)
¢ Recurrent Neural Networks (RNNs)

e Auto-encoders (AE)

.




Feed forward neural networks

hidden units




Neural network mapping

e Compute weighted sum of inputs:

D D

1 R 1 hidden units
ij X/+W0 —ZW/ :
=1 i—0 A

e Output k two-layer network:

M D
Pt (St (E )|
j=0 i=0

e f; and f; hidden unit activation
functions




Non-linearity and training

e Linear activation functions will give a

linear network. “
» Logistic function o(a) = 1= -
« Hyperbolic tangent tanh(a) = &= ,

 Rectified linear relu(a) = max(0, a)

tanh

RelU
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Non-

linearity and training

Linear activation functions will give a
linear network.

Logistic function o(a) = .

+e—4
Hyperbolic tangent tanh(a) = %
Rectified linear relu(a) = max(0, a)

Supervised learning
Labeled training set

D:{(X/,y/)|i:1,...,n}.

Input x; and output y;.

Minimize training error by (stochastic)
gradient descent

f(x)




Non-

linearity and training

Linear activation functions will give a
linear network.

Logistic function o(a) = .

14+e-2
Hyperbolic tangent tanh(a) = %
Rectified linear relu(a) = max(0, a)

Supervised learning
Labeled training set

D:{(X/,y/)|i:1,...,n}.

Input x; and output y;.

Minimize training error by (stochastic)
gradient descent

tanh

RelU







Example: MNIST handwritten digits
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Train a network to classify 28 x 28 images.
Data: 60000 input images x, and labels y,, n=1,...,60k.
Example model gives around 1.2% test error.
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Example Network

output y

weights 10x144

hidden 2 144 units

weights 144x225

hidden 1 225 units

weights 225x784

input x 784 pixels

10 classes

h® = softmax(W®h?®) + b))

h®@ — reIu(W(z)h“) + b(2))

h(M = relu(W(Mx 4+ b(")

exp(z;)
2_;exp(Z)
max (0, z)

softmax(z);, =
relu(z) =




On activation functions

1
tanh — |
sigmoid
0.5 RelLU

X 0

-0.5

-1

-3 -2 -1 0 1 2 3

e relu(z) = max(0, z) is replacing old sigmoid and tanh.
¢ Note that identity function would lead into:

h® = w@hr() L p@
= W@Wx + b"M) 4+ p@
= (WAW)x + (WP 1 p2)
=Wx+b



Weight matrix W(1) size 225 x 784




Signals x — h() — h®) — h©®)

inputs hidden activations 1
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On sparsity

15 10

0
h() o1 0.2 03 04 o o005 o1 015 02h®

How often h; > 0? Histogram over units /.
(Sometimes units become completely dead.)



Part 3:
Neural network training



Training criterion

Say we have a true distribution P(y | x) and we
would like to find a model Q(y | x, 8) that matches
P. Let us study how maximizing expected negative
log-likelihood C = Ep [— log Q] works as a learning

criterion.
Find parameters 6" = argmin C(6) = argmin Ep(y ) [~ log QY | x, )]
— (L) (L) Let us assume that there is a 6* for which
0= {W ’ b } Q(y|x,8*) = P(y|x). We can note that the gra-
dient at 6*

that minimize expected .
negative log-likelihood: Srix [a A 1,67
=Epy|x) [i log Q(y | x, 8" )]

C = Eqata [ log P(y|x, 0)] . 09 vx 0%
/P | x) &Z————dy
Learning becomes optimiza-

tion.

becomes zero, that is, the learning converges when
Q = P. Therefore the expected log-likelihood is a
reasonable training criterion.



Classification - one hot encoding and cross-entropy

e MNIST, output labels: 0,1,...,9.
e Convenient to use a sparse one hot encoding:

0—y=(1,0,0,0,0,0,0,0,0,0)"
1—y=(0,1,0,0,0,0,0,0,0,0)"
2 —y=(0,0,1,0,0,0,0,0,0,0)"

9—>V:(070,07(),0,0,070’071)7-

e Output
h® = softmax(W®h() + p®))

interpreted as class(-conditional) probability.
e Cross-entropy cost - sum over data and

C= _Z Vo log hff')



Gradient descent

Simple algorithm for minimizing the training criterion C.

oC
99

Gradientg = VoC(0) = | :
ac
90,
lterate Oy1 = Ox — Nk Gk

Notation: iteration k, stepsize (or learning rate) 7,



Backpropagation (Linnainmaa, 1970)

Computing gradients in a network.

output y

1 output
1 weight
@len h 1 unit
1 weight

input x 1 input

e First with scalars. Use chain rule:

oC  9C 0h®
owz  0h?) ow,
oC _ 9C 0h® oh(1)
owy — 9h oh() owy

. 2 2 1
e Chain rule: 3{’9’;) — oh® ont)

on(1) ox



Backpropagation

e Multi-dimensional:

output y 10 classes 8 C o 8 C ahl(a)
3) 3 3
weights 10x144 9 VVU( ) 8hl( ) 9 VVIj( )

(w2 s OC <~ 0C 0h oh?
owd 5 on® on® ow

) 9h® Hp(M

weights 144x225

@enl 125 units oC _ aC oh;
Zj: Z,: on'® oh

(1) (2) 541 (1)
weights 225x784 d Wkl il 8hk 9 Wkl
input x mapixeis ® HOW many paths - for two hidden

layers
e as a function of depth?



Backpropagation

e Multi-dimensional:

@ 10 classes 80 . aC ahl(s)
3) 3 3
weights 10x144 8VV,/( ) ah( )8W.(. )

hidden 2 144 units oC _2: oC ahl(s (9/7](2)
aW.Sf) T on® on® ow P
I I
3) op(2 1
) 9h@ Hp(M

weights 144x225

, _ h
@e“ 1 225 units Z Z dC 9 i
(1) (2 (1) (1)
weights 225x784 9 Wkl 8hk 9 Wkl
input x mapixeis ® HOW many paths - for two hidden

layers
e as a function of depth?



Backpropagation - dynamic programming
e Store intermediate results

aC 5 ac on®
on® S on® on®
output y 10 classes J / ! )]
(2)
weights 10x144 oC :Z oC ahj
Cj 8hf(1) ~ 9h2) 8h,((1)
hidden 2 144 units J J
weights 144x225 ¢ In general

@enl 225 units oC Z a9C ahl(/-”)
weights 225x784 8hj(/) B ; 8h§l+1) 8/‘)}/)

@ 784 pixels e and gradient:

oc  oc oh"

n / /
ow on? ow)




Tiny Example

y~ N(Wgh, 1)

h=wyx

“Data set” {x =1,y = 1.5}
Some weight decay.

C = (wiw2—1.5)%+0.04(w?+w2)

output y 1 output

1 weight

Objective Function
hidden h 1 unit

1 weight K
input x 1 input \
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Gradient descent, n, = 0.25 (— too slow)

0k.1 = 0k — nkYy, iteration k, stepsize (or learning rate) 7y




Gradient descent, n, = 0.35 (— oscillates)

Nk9k

Oki1 =0k —




Newton’s method, too complex

90,007 90,00,

1 .

Oki1 =0k —H, gy, H= : : :
00,004 060006

e Less oscillations.

¢ Points to the wrong
direction in places
(solvable).

e Computational
complexity: #params?3
(prohibitive).

e There are

A SRS approximations, but not

o5 ! 15 2 25 very popular.




Momentum method (Polyak, 1964)

My = aMyg — NGk
Oki1 = Ok + My




Momentum method with noisy gradient




Mini-batch training

No need to have an accurate estimate of g.

Use only a small batch of training data at once.

Leads into many updates per epoch (=seeing data once).
E.g. 600 updates with 100 samples per epoch in MNIST.



Mini-batch training

No need to have an accurate estimate of g.

Use only a small batch of training data at once.

Leads into many updates per epoch (=seeing data once).
E.g. 600 updates with 100 samples per epoch in MNIST.
Important to anneal stepsize 7, towards the end, e.g.

Learning rate schedule

1k

stepsize
o
o

0 L L . L
0 10 20 30 40 50
epoch

Adaptation of n, possible (Adam, Adagrad, Adadelta).



W) after epoch 1




W) after epoch 2




W) after epoch 3




W) after epoch 4




W) after epoch 5




W) after epoch 10




W) after epoch 50 (final)
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Ole Winther
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