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Outline

* Deep learning introduction

* Unsupervised pretraining with autoencoders

* Ladder networks (semi-supervised autoencoders)
 Generative adversarial networks

 Scaling up autoencoders to complex data distributions (images)



‘Shallow’ computer vision

Hand-engineer a clever representation of the input image.
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Deep feature learning
Learn a hierarchical representation of the input.
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Neural networks 101

h“)(x) h(z)(x)
hidden representations

f(x)
output

Hidden units are calculated from

h O (x) =x
B ) = o (WORD (x) + b0
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ox) = 1+ exp(—x)



Neural networks 101

h“)(x) h(z)(x)
hidden representations

f(x)
output

Given a training sample (x,y), and
a loss function £, e.qg.

LIfx),y) = |f(x) —yl}3

the network parameters are opti-
mized using back-propagation.



Deep learning overview

Learn to solve the given task from data.
y =f(x;0)

* x: Input (e.g. image).
» y: Output (e.g. bird, cat, dog).
* f: Neural network.

 0: Network parameters.



Deep learning overview

Learn to solve the given task from data. Learn © from from pairs x,y using
gradient descent wrt. a chosen loss
y =f(x;0) function.
« x: Input (e.g. image). L(y,f(x;0))

» y: Output (e.g. bird, cat, dog).
* f: Neural network.

 0: Network parameters.



Deep learning overview

Learn to solve the given task from data.

y =f(x;0)

* x: Input (e.g. image).
» y: Output (e.g. bird, cat, dog).
* f: Neural network.

 0: Network parameters.

Learn © from from pairs x,y using
gradient descent wrt. a chosen loss
function.

L(y,f(x;0))

Hierarchical function decomposition
allows us to learn distributed
representations of our input.
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Deep learning overview

The good

e Powerful function
approximation.

* Local optima not
problematic with
high-dimensional
parameters.

* Feature disentangling.

The bad

e Computationally
intensive.

* Can easily overfit.

* Require lots of data.

The ugly

 Finding a good
architecture (layer
types, layer ordering).

* Hyperparameter
tuning (layer sizes,
learning rate, weight
initialization).



Beyond supervised models

By construction, neural networks lend themselves to supervised learning.
* How do we leverage the power of neural networks in the unlabeled case?

* How do we combine network functions to form a semi-supervised model handling
both unlabeled and labeled data?



Unsupervised pretraining

Vincent, P, Larochelle, H., Lajoie, |, et al. [2010]. “Stacked denoising autoencoders: Learning useful representations

in a deep network with a local denoising criterion”. In: Journal of Machine Learning Research 11.Dec, pp. 3371-3408.

Hinton, G. E. and Salakhutdinoy, R. R. [2006]. “Reducing the dimensionality of data with neural networks”. In: Science
313.5786, pp. 504-507.



Idea

* Learn features in an unsupervised manner.
 Transfer learned features to a supervised model.

* Hope that the pretrained features alleviate overfitting.



Idea

* Learn features in an unsupervised manner.
 Transfer learned features to a supervised model.
* Hope that the pretrained features alleviate overfitting.

Note: Today, supervised training of neural networks has improved such that pretraining
rarely is beneficial.



Autoencoders

* Learn an encoder-decoder architecture to reconstruct a dataset sample x as X.
- Train using a chosen loss function, e.g. £ (x,%) = ||x — %|.

 Bottleneck representation z forces encoder to disentangle input.
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Layer-wise pretraining scheme
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Denoising autoencoders

 Corrupt input to make higher level representations more robust.
* Very similar to dropout.

* Prevents co-adaptation of features.
« Effective reqularizer.
* Model averaging.
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Denoising autoencoders, filters

(a) No corruption (b) 25% corruption (c) 50% corruption

(d) Neuron A (0%, 10%, 20%, 50% corruption) (e) Neuron B (0%, 10%, 20%, 50% corruption)
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Denoising autoencoders, results

| DataSet | SVM,;; | DBN-1| SAE-3| DBN-3|  SDAE-3(v) |
MNIST 1.40+023 | 121021 | 1.40+023 | 1.24=x022 | 1.28+022(25%)
basic 3.03+0.15 | 3.94x017 | 346x016 | 3.11x015 | 2.84+0.15(10%)
rot I1.11x028 | 14.69+0.31 | 10.30x027 | 10.30£027 | 9.53+0.26 (25%)
bg-rand 14.58+031 | 9.80+026 | 11.28+028 | 6.73=022 | 10.30+0.27 (40%)
bg-img 22.61+037 | 16.15x032 | 23.00+037 | 16.31+032 | 16.68+0.33 (25%)
bg-img-rot | 55.18+044 | 52.21+044 | 51.93+044 | 47394044 | 43.76+0.43 (25%)
rect 2154013 | 4.71+019 | 241+0a3 | 2.60+0.14 | 1.99+0.12 (10%)
rect-img 24 044037 | 23.69x037 | 24.05+037 | 22.50+037 | 21.59+0.36 (25%)
convex 19.134034 | 19.92+035 | 18.41+034 | 18.63+0.34 | 19.06+0.34 (10%)
tzanetakis | 14.41+2.18 | 18.07+1.31 | 16.15+1.95 | 18.38+1.64 | 16.02+1.04(0.05)




Semi-supervised learning with
Ladder networks

Rasmus, A., Berglund, M., Honkala, M., et al. [2015]. “Semi-supervised Learning with Ladder Networks”. In: Advances
in Neural Information Processing Systems 28. Ed. by C. Cortes, N. D. Lawrence, D. D. Lee, et al. Curran Associates, Inc.,

pp. 3546-3554.

Mohammad, P, Linxi, F., Philemon, B., et al. [2016]. “Deconstructing the Ladder Network Architecture”. In:

Proceedings of the 33rd International Conference on Machine Learning (ICML).



Idea
» Combine a discriminative network with the encoder network of an autoencoder.

 Perform layerwise denoising (lateral connection).

* Ingenious architecture engineering.

* Gaussian noise after batch normalization.
» Squared-error denoising criterion after batch normalization.



Ladder architecture

Encode x both with and
without noise.

Decode by combining lateral
and downward signal.

Layer-wise reconstruction error
with clean encoding as target.

Cross-entropy error for labeled
examples.
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Results, MNIST

Table 1: A collection of previously reported MNIST test errors in the permutation invariant setting
followed by the results with the Ladder network. * = SVM. Standard deviation in parentheses.

Test error % with # of used labels 100 1000 All
Semi-sup. Embedding (Weston et al., 2012) 16.86 5.73 L5
Transductive SVM (from Weston et al., 2012) 16.81 5.38 1.40%

MTC (Rifai et al., 2011) 12.03 3.64 0.81
Pseudo-label (Lee, 2013) 10.49 346

AtlasRBF (Pitelis et al., 2014) 8.10(+£0.95) 3.68(+0.12) 1.31

DGN (Kingma et al., 2014) 333(£0.14) 240(£0.02) 096

DBM, Dropout (Srivastava et al., 2014) 0.79
Adversarial (Goodfellow et al., 2015) 0.78

Virtual Adversarial (Miyato et al., 2015) 2.12 1.32 0.64 (+ 0.03)
Baseline: MLP, BN, Gaussian noise 21.74 (£ 1.77)  5.70 (£ 0.20) 0.80 (£ 0.03)
I'-model (Ladder with only top-level cost) 3.06 (£ 1.44) 1.53 (£ 0.10) 0.78 (£ 0.03)
Ladder, only bottom-level cost 1.09 (£0.32) 0.90 (£ 0.05) 0.59 (£ 0.03)

Ladder, full 106 (+ 0.37)  0.84 (£ 0.08) 057 (£ 0.02)



Variational autoencoders

Later this week!



Generative adversarial networks

Goodfellow, I., Pouget-Abadie, J., Mirza, M., et al. [2014]. “Generative Adversarial Nets”. In: Advances in Neural
Information Processing Systems 27. Ed. by Z. Ghahramani, M. Welling, C. Cortes, et al. Curran Associates, Inc.,

pp. 2672-2680.

Salimans, T., Goodfellow, I. )., Zaremba, W., et al. [2016]. “Improved Techniques for Training GANs”. In: CoRR
abs/1606.03498.

Radford, A., Metz, L., and Chintala, S. [2016]. “Unsupervised representation learning with deep convolutional

generative adversarial networks”. In: Proceedings of the International Conference on Learning Representations.



Idea

 Learn to generate samples that imitate real data samples.

 Discriminator network: learn to tell generated samples from real dataset samples
(binary classification).

* Generator network: learn to fool the discriminator.

Setup
X ~ Pdata(), Dataset sample Dis(-), Discriminator network
z ~ N(0,1), Noisy variable Gen(-), Generator network

Training objective:

min max E, (x) logDis(x)] +E, _p() [log(1 — Dis(Gen(z)))]

Gen Dis ~Paata



GAN example

Near-convergence behavior on 1D data.
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* Black dotted line: Data distribution, pgata(X) ~ N (+)

* Green line: Generative distribution, Gen(x)
e Blue dashed line: Discriminative distribution
* x, black line: data space

* z, black line: z-space, p;(z) ~ Uniform(-)



Convolutional decoder architecture

When generating images, the generator network dilutes high-dimensionsional features
3
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in exchange for increased resolution.

Stride 2




Semi-supervised GAN discriminator
For classification: Discriminator predicts K + 1 classes where the extra class represents
the generated sample.

L= 7]Ea:,y~pdm(m,y) [log pmodel(ylm)] - EmNGﬂOngodel(y =K+ 1|$)]
= Lsupervised + Lunsupervisedu where
Lsupervised = _Em,yrvpdm(m,y) IOngodel(y\IE, y < K + 1)
Lunsupervised = —{Eqmpa () 108[1 — Pmodet (¥ = K + 1|2)] + Ezn 10g[Pmoder (y = K + 1]x)]},



Semi-supervised GAN discriminator

For classification: Discriminator predicts K + 1 classes where the extra class represents
the generated sample.

L= 7]Ea:,y~pdm(m,y) 108 Pmodet (¥|2)] — Eznc[10g Prmoder (¥ = K + 1]2)]
= Lsupervised + Lunsupervisedu where
Lsupervised = _]Em,ywpdm(m,y) logpmodel(y‘my y < K+ 1)
LUﬂS“PEWiS&d = 7{Em~pdm(m) log[l — Pmodel ('y =K+ 1|$)} + Ezng log[pmodel(y =K+ 1‘1‘)]},

Model Test error rate for
a given number of labeled samples
1000 2000 4000 8000
Ladder network [24] 20.4040.47
CatGAN [14] 19.5840.46
Our model 21.83%+2.01 19.611+2.09 18.631+£2.32 17.72+1.82

Ensemble of 10 of our models 19.2240.54 17.254+0.66 15.59+0.47 14.871+0.89




Semi-supervised GAN discriminator

For classification: Discriminator predicts K + 1 classes where the extra class represents
the generated sample.

L=-FEyyu, Eﬂﬂ‘\@ﬁal. odel(y = K +1]z)]
= Lsupervised .-‘agmwnn
Lsupervised - _]Em,yrvz: n-al.mﬁﬂﬂ-

Lunsnpervised = _{]E:l:NP. .9!5”...“ EmNG log[pmodel(y =K+ 1|$)]},
el o NN R
m‘!.-!}. r rate for
-_EEF--éH" f labeled samples
Ladd k [24] -a}llg.ﬁ= 20 44‘;30100 47 =
adder networ ™ = . .
CatGAN [14] ﬂﬁl.ﬂ:’.ﬁﬂ 19.58+0.46
Our model a.&t.ﬁﬂ_fﬁn 18631232 17.72+1.82

Ensemble of 10 of our models 19.2240.54 17.254+0.66 15.59+0.47 14.87+0.89

Model




Autoencoding beyond pixels using a
learned similarity measure

Larsen, A. B. L., Senderby, S. K., Larochelle, H., et al. [2016]. “Autoencoding beyond pixels using a learned similarity

metric”. In: Proceedings of the 33rd International Conference on Machine Learning (ICML).



Idea

- Element-wise loss function £ (x,%) = ||x — x||? is unsuitable for natural images.
* Why not try convnet features as a basis for measuring image similarity?

* Let’s use features from a generative adversarial network to remain unsupervised.



Our building blocks

Variational autoencoder
z~N(0,1I)

encoder decoder

* Good for MNIST-style data.

* Doesn’t scale to natural images
because of element-wise similarity
measures.



Our building blocks

Variational autoencoder
z~N(0,1I)

encoder decoder

* Good for MNIST-style data.

* Doesn’t scale to natural images
because of element-wise similarity
measures.

Generative adversarial network
z~N(0,1I)

generator

X

X discriminator

» Capable of generating natural
looking images.

¢ No inference network.

real / gen



Combining VAEs with GANs

 Collapse the VAE decoder and the GAN generator into one network.
* Move the reconstruction error up in the discriminator network.

* Train both VAE and GAN simultaneously from scratch.

encoder decoder/generator

> real/gen
X discriminator

F——""— VAE ——M8

f GAN



Implementation details

ﬁprior P(Z)

LeAN

DiS[
‘Cllike



Implementation details

ﬁprior

Enc \Dec

X X X Dis
|

DiSl
L Llike

Pixel-based observation model: Feature-based observation model:
px|z) =N(x[x,1) p(Disi(x) | z) =



Implementation details

p(z)
Zp
Dec
7|‘ Xp Dis

LeAN




Implementation details

ﬁprior P(Z)

A4
Liie
Training objective:
DI
L= ﬁprior + E[ufé +LcaN
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Implementation details

ﬁprior P(Z)

z z

Enc Dec

Update only encoder/decoder networks wrt. reconstruction error.



Implementation details

['prior p(Z)

[ L— » LGAN

DiS[
‘Cllike

Update only decoder/discriminator networks wrt. adversarial loss.



Experiments

Mainly using 64 x 64 images from the CelebA dataset. [Liu et al. 2015]




Models
VAE Plain variational autoencoder with pixel-wise image similarity.
VAEDp;s, VAE with feature-wise similarities from a pretrained GAN.
VAE/GAN  Our hybrid method.

GAN Plain generative adversarial network.



Samples

VAE
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Reconstructions

Input

VAE

z
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What is a good image reconstruction?

* Human visual perception is not pixel-perfect.

» Should we require perfect pixels from our model?

Original Reconstructions

pixel-wise

feature-wise



What is a good image reconstruction?

* Human visual perception is not pixel-perfect.
» Should we require perfect pixels from our model?

* Arguably, semantic concepts are more important than pixels.

Original Reconstructions Original Reconstructions

pixel-wise pixel-wise

F

feature-wise

feature-wise



Visual attribute vectors

After unsupervised training, we calculate the mean z difference for images with/without an
attribute. Difference vectors capture visual attributes:




Visual attribute vectors

After unsupervised training, we calculate the mean z difference for images with/without an

attribute. Difference vectors capture visual attributes:
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Interpolations in latent space

| sent my adviser into latent space and sampled a few visual attribute vectors:
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Quantitative results: Recognizability of generated attributes

Idea: Learn a conditional model p(x |y, z) where y are visual attributes. Generate
images from sampled z and attribute queries y.

encoder decoder/generator

X X
o > real/ gen
X discriminator




Quantitative results: Recognizability of generated attributes

Idea: Learn a conditional model p(x |y, z) where y are visual attributes. Generate
images from sampled z and attribute queries y.

Yy
encoder decoder/generator

: Yy
X X \ _

o > real/ gen
X discriminator




Quantitative results: Recognizability of generated attributes

Idea: Learn a conditional model p(x |y, z) where y are visual attributes. Generate
images from sampled z and attribute queries y.

—ss Prominent attributes: White, Prominent attributes: White,
Query Mouth Closed, Male, Curly Hair, Query @ Male, Curly Hair, Frowning, Pointy
& Eyes Open, Pale Skin, Frowning, Nose, Eyeglasses, Narrow Eyes,
Pointy Nose, Teeth Not Visible Teeth Not Visible, Senior
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Quantitative results: Recognizability of generated attributes

Idea: Learn a conditional model p(x |y, z) where y are visual attributes. Generate
images from sampled z and attribute queries y.

Evaluation: Attribute prediction error from a separately trained regressor convnet.

Model Cosine similarity (best of 10) Mean squared error
LFW test set 0.9193 14.1987
VAE 0.9030 27.59 + 1.42
GAN 0.8892 27.89 + 3.07

VAE/GAN 0.9114 22.39 +1.16




Final words



Take-home messages

* You can learn useful structures from fragile error signals.

» Good disentangled representations can make the discriminative task easier.



Thanks



