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Outline

• Deep learning introduction

• Unsupervised pretraining with autoencoders

• Ladder networks (semi-supervised autoencoders)

• Generative adversarial networks

• Scaling up autoencoders to complex data distributions (images)
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‘Shallow’ computer vision
Hand-engineer a clever representation of the input image.

input image
features

decision
boundary

result

Person?
yes / no

feature
vector

Deep feature learning
Learn a hierarchical representation of the input.

input feature
vector

1st layer features
edges

2nd layer features
parts

3nd layer features
objects

. . .
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Neural networks 101
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Hidden units are calculated from

h(0)(x) = x

h(i)(x) = σ
(
W(i)h(i−1)(x) + b(i)

)
σ(x) =

1
1+ exp(−x)
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Neural networks 101
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Given a training sample (x,y), and
a loss function L, e.g.

L(f (x),y) = ‖f (x) − y‖22

the network parameters are opti-
mized using back-propagation.
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Deep learning overview

Learn to solve the given task from data.

y = f (x;θ)

• x: Input (e.g. image).

• y: Output (e.g. bird, cat, dog).

• f : Neural network.

• θ: Network parameters.
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Deep learning overview

Learn to solve the given task from data.

y = f (x;θ)

• x: Input (e.g. image).

• y: Output (e.g. bird, cat, dog).

• f : Neural network.

• θ: Network parameters.

Learn θ from from pairs x,y using
gradient descent wrt. a chosen loss
function.

L (y, f (x;θ))

Hierarchical function decomposition
allows us to learn distributed
representations of our input.

f (x;θ) = f (n)
(
. . . f (1)

(
x;θ(1)

)
. . . ;θ(n)

)
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Deep learning overview

The good

• Powerful function
approximation.

• Local optima not
problematic with
high-dimensional
parameters.

• Feature disentangling.

The bad

• Computationally
intensive.

• Can easily overfit.

• Require lots of data.

The ugly

• Finding a good
architecture (layer
types, layer ordering).

• Hyperparameter
tuning (layer sizes,
learning rate, weight
initialization).
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Beyond supervised models

• By construction, neural networks lend themselves to supervised learning.

• How do we leverage the power of neural networks in the unlabeled case?

• How do we combine network functions to form a semi-supervised model handling
both unlabeled and labeled data?
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Unsupervised pretraining
Vincent, P., Larochelle, H., Lajoie, I., et al. [2010]. “Stacked denoising autoencoders: Learning useful representations

in a deep network with a local denoising criterion”. In: Journal of Machine Learning Research 11.Dec, pp. 3371–3408.

Hinton, G. E. and Salakhutdinov, R. R. [2006]. “Reducing the dimensionality of data with neural networks”. In: Science

313.5786, pp. 504–507.
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Idea

• Learn features in an unsupervised manner.

• Transfer learned features to a supervised model.

• Hope that the pretrained features alleviate overfitting.
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Idea

• Learn features in an unsupervised manner.

• Transfer learned features to a supervised model.

• Hope that the pretrained features alleviate overfitting.

Note: Today, supervised training of neural networks has improved such that pretraining
rarely is beneficial.
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Autoencoders

• Learn an encoder-decoder architecture to reconstruct a dataset sample x as x̃.

• Train using a chosen loss function, e.g. L (x, x̃) = ‖x− x̃‖2.

• Bottleneck representation z forces encoder to disentangle input.

x x̃

z
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Layer-wise pretraining scheme
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Denoising autoencoders

• Corrupt input to make higher level representations more robust.
• Very similar to dropout.
• Prevents co-adaptation of features.
• Effective regularizer.
• Model averaging.
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Denoising autoencoders, filters
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Denoising autoencoders, results
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Semi-supervised learning with
Ladder networks

Rasmus, A., Berglund, M., Honkala, M., et al. [2015]. “Semi-supervised Learning with Ladder Networks”. In: Advances

in Neural Information Processing Systems 28. Ed. by C. Cortes, N. D. Lawrence, D. D. Lee, et al. Curran Associates, Inc.,

pp. 3546–3554.

Mohammad, P., Linxi, F., Philemon, B., et al. [2016]. “Deconstructing the Ladder Network Architecture”. In:

Proceedings of the 33rd International Conference on Machine Learning (ICML).
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Idea

• Combine a discriminative network with the encoder network of an autoencoder.

• Perform layerwise denoising (lateral connection).
• Ingenious architecture engineering.
• Gaussian noise after batch normalization.
• Squared-error denoising criterion after batch normalization.
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Ladder architecture

• Encode x both with and
without noise.

• Decode by combining lateral
and downward signal.

• Layer-wise reconstruction error
with clean encoding as target.

• Cross-entropy error for labeled
examples.
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Results, MNIST
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Variational autoencoders
Later this week!
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Generative adversarial networks
Goodfellow, I., Pouget-Abadie, J., Mirza, M., et al. [2014]. “Generative Adversarial Nets”. In: Advances in Neural

Information Processing Systems 27. Ed. by Z. Ghahramani, M. Welling, C. Cortes, et al. Curran Associates, Inc.,

pp. 2672–2680.

Salimans, T., Goodfellow, I. J., Zaremba, W., et al. [2016]. “Improved Techniques for Training GANs”. In: CoRR

abs/1606.03498.

Radford, A., Metz, L., and Chintala, S. [2016]. “Unsupervised representation learning with deep convolutional

generative adversarial networks”. In: Proceedings of the International Conference on Learning Representations.
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Idea

• Learn to generate samples that imitate real data samples.

• Discriminator network: learn to tell generated samples from real dataset samples
(binary classification).

• Generator network: learn to fool the discriminator.

Setup
x ∼ pdata(), Dataset sample
z ∼ N (0, I), Noisy variable

Dis(·), Discriminator network
Gen(·), Generator network

Training objective:

min
Gen

max
Dis

Ex∼pdata(x) [log Dis(x)] + Ez∼p(z) [log(1− Dis(Gen(z)))]
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GAN example
Near-convergence behavior on 1D data.

• Black dotted line: Data distribution, pdata(x) ∼ N (·)

• Green line: Generative distribution, Gen(x)

• Blue dashed line: Discriminative distribution

• x, black line: data space

• z, black line: z-space, pz(z) ∼ Uniform(·)
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Convolutional decoder architecture
When generating images, the generator network dilutes high-dimensionsional features
in exchange for increased resolution.
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Semi-supervised GAN discriminator
For classification: Discriminator predicts K + 1 classes where the extra class represents
the generated sample.
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Semi-supervised GAN discriminator
For classification: Discriminator predicts K + 1 classes where the extra class represents
the generated sample.
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Autoencoding beyond pixels using a
learned similarity measure

Larsen, A. B. L., Sønderby, S. K., Larochelle, H., et al. [2016]. “Autoencoding beyond pixels using a learned similarity

metric”. In: Proceedings of the 33rd International Conference on Machine Learning (ICML).
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Idea

• Element-wise loss function L (x, x̃) = ‖x− x̃‖2 is unsuitable for natural images.

• Why not try convnet features as a basis for measuring image similarity?

• Let’s use features from a generative adversarial network to remain unsupervised.
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Our building blocks

Variational autoencoder

x x̃

encoder decoder

z ∼ N (0, I)

• Good for MNIST-style data.

• Doesn’t scale to natural images
because of element-wise similarity
measures.
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Our building blocks

Variational autoencoder

x x̃

encoder decoder

z ∼ N (0, I)

• Good for MNIST-style data.

• Doesn’t scale to natural images
because of element-wise similarity
measures.

Generative adversarial network

z ∼ N (0, I)

x̃
real / gen

discriminator

generator

x

• Capable of generating natural
looking images.

• No inference network.
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Combining VAEs with GANs

• Collapse the VAE decoder and the GAN generator into one network.

• Move the reconstruction error up in the discriminator network.

• Train both VAE and GAN simultaneously from scratch.

x

z

x̃
real / gen

encoder

discriminator

decoder/generator

x

GAN
VAE
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Implementation details

LDislllike

LGAN
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Implementation details

LDislllike
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LDislllike

x

z

x̃

Enc

x
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Dec

Dis

Pixel-based observation model:
p(x | z) = N (x | x̃, I)

Feature-based observation model:
p(Disl(x) | z) =

N (Disl(x) | Disl(x̃), I)
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Implementation details
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Implementation details

x
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Training objective:
L = Lprior + L

Disl
llike︸ ︷︷ ︸

LVAE

+LGAN
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Implementation details
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LDislllike

Update only encoder/decoder networks wrt. reconstruction error.
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Implementation details

LDislllike

x

z

x̃

Enc

Dis

Dec

x

Lprior

zp

xp

p(z)

LGAN

Update only decoder/discriminator networks wrt. adversarial loss.
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Experiments

Mainly using 64×64 images from the CelebA dataset. [Liu et al. 2015]
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Models

VAE Plain variational autoencoder with pixel-wise image similarity.

VAEDisl VAE with feature-wise similarities from a pretrained GAN.

VAE/GAN Our hybrid method.

GAN Plain generative adversarial network.
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Samples

VAE

VAEDisl

VAE/GAN

GAN
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Reconstructions

Input

VAE

VAEDisl

VAE/GAN
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What is a good image reconstruction?

• Human visual perception is not pixel-perfect.

• Should we require perfect pixels from our model?

~ ? 

pixel-wise

feature-wise

Original Reconstructions

~ ? 
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What is a good image reconstruction?

• Human visual perception is not pixel-perfect.

• Should we require perfect pixels from our model?

• Arguably, semantic concepts are more important than pixels.

~ ? 

pixel-wise

feature-wise

Original Reconstructions

~ ? 

Original Reconstructions

pixel-wise

feature-wise

~ ? 

~ ? 
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Visual attribute vectors
After unsupervised training, we calculate the mean z difference for images with/without an
attribute. Difference vectors capture visual attributes:
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Visual attribute vectors
After unsupervised training, we calculate the mean z difference for images with/without an
attribute. Difference vectors capture visual attributes:
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Interpolations in latent space

I sent my adviser into latent space and sampled a few visual attribute vectors:
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Quantitative results: Recognizability of generated attributes

Idea: Learn a conditional model p(x | y, z) where y are visual attributes. Generate
images from sampled z and attribute queries y.

x

z

x̃
real / gen

encoder

discriminator

decoder/generator

x
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Quantitative results: Recognizability of generated attributes

Idea: Learn a conditional model p(x | y, z) where y are visual attributes. Generate
images from sampled z and attribute queries y.

x
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x̃
real / gen
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Quantitative results: Recognizability of generated attributes

Idea: Learn a conditional model p(x | y, z) where y are visual attributes. Generate
images from sampled z and attribute queries y.

Query
Prominent attributes: White,
Mouth Closed, Male, Curly Hair,
Eyes Open, Pale Skin, Frowning,
Pointy Nose, Teeth Not Visible

VAE

GAN

VAE/GAN

Query
Prominent attributes: White,
Male, Curly Hair, Frowning, Pointy
Nose, Eyeglasses, Narrow Eyes,
Teeth Not Visible, Senior

VAE

GAN

VAE/GAN
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Quantitative results: Recognizability of generated attributes

Idea: Learn a conditional model p(x | y, z) where y are visual attributes. Generate
images from sampled z and attribute queries y.

Evaluation: Attribute prediction error from a separately trained regressor convnet.

Model Cosine similarity (best of 10) Mean squared error

LFW test set 0.9193 14.1987

VAE 0.9030 27.59 ± 1.42
GAN 0.8892 27.89 ± 3.07
VAE/GAN 0.9114 22.39 ± 1.16
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Final words
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Take-home messages

• You can learn useful structures from fragile error signals.

• Good disentangled representations can make the discriminative task easier.
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Thanks


