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Summary

In this work we consider two learning based methods,

to segment void and pore structures of x-ray µCT vol-

umetric data of porous chalk rocks. The methods uti-

lize synthetically generated datasets as ground truth

in the training phase and as accuracy estimation.

Our problem

It is impractical and inaccurate to determine the fea-

sibility of segmentation methods by visual inspection

alone, due to the resolution and level of complexity

of datasets. For those reasons, annotated data is not

readily available. Consequently, dataset specific regu-

larization parameters are difficult to justify in any en-

ergy formulation of the problem. Particularly in the

case of our data, there is a clear trade off in computa-

tion time and accuracy. The latter which is an essen-

tial, as the segmentation serves as a stepping stone in

a larger analysis pipeline.

A XY-slice of the actual datasets we are working on

(left) and our currently best segmentation estimate

(right) can be seen below. Here one voxel (volume

pixel) corresponds to 50 nm. One dataset is ~4 GB.

Figure 1: Experimental dataset (left) shown in color to highlight com-
plexity and the current best segmentation (right), with our active coun-
tour based method, using Chambolle-Kremers-Pock regularization of the
length term

Our approach

In order to get access to ground truth data for train-

ing the methods and compute measures of accuracy,

we synthetically generate data that mimics the statisti-

cal behaviour of experimental datasets. To be able to

approximate experimental datasets as closely as pos-

sible, we add blurring, noise, ringing, and bias field

artefacts, as well as a diagenetic models as a post pro-

cessing step.

We consider two novel learning methods for segment-

ing the data; (1) a trained optimized reaction diffu-

sion process, proposed by Chen, Yu, and Pock; and

(2) reformulating Jose Caballero’s work on a spasely

encoded dictionary based learning method for joint

reconstruction and segmentation of MRI imaging to

fit our X-ray µCT problem.

Synthetic data genera-
tion

– Multiphase segment data volume

– Compute watershed regions for each

label, using distance maps and min-

ima imposition

– Transform regions to diameters of

spheres that share the same volume,

sort them, and compute the cumula-

tive sum to sample from.

– compute distribution of different la-

bels to sample a rock type from

Figure 2: Watershed ridge lines, superimposed on an
example dataset.
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Figure 3: Inverse transform sampling of the gener-
ated grain size distribution.

Simulating multiphase grains
and artefacts

– A material is sampled from the dis-

tribution of labels

– Sampled radii are converted to ran-

domly shaped convex grains, and

rescaled to fit the corresponding vol-

ume.

– Grains are initialized in a grid like

towering structure before they are

simulated, using Kenny Erleben and

Sarah Niebe’s PROX simulator.

Figure 4: End of running the PROX physics simula-
tion; all contact forces are at an equilibrium, so no
changes occur - grains are collected in the container
box or the larger collection box below.

Figure 5: The meshed solid space of the generated
dataset, here a single phase is shown representing all
solids.

– Simulated grains are converted back

into a volume mask of labeled grains.

– The mask is saved and used as

ground truth for comparison and cal-

culation of similarity measures.

– Artefacts like ringing effects, inten-

sity inhomogeneities, and noise dis-

tribution models are added to the

generated data and can now subse-

quently be used for training and test-

ing of methods.

Figure 6: Slice of synthetically generated dataset, af-
ter having applied artefacts and noise models.

Learning optimized reaction diffusion processes
Based on the recent paper "On learning optimized reaction diffusion processes for

image restoration", by Chen, Yu, and Pock. Based on the Perona-Malik diffusion

model, but simultaneously trains filters and influence functions.

Dictionary based learning for joint reconstruction
and segmentation

– patch-based dictionary sparse coding, with the following energy formulation,

from the Ph.D. Thesis of Jose Cabellero:

min
Γ,θ,x

||Fux− y||22 +
λ

Np

N

∑
n=1

||Rnx− Dγn||22− β ln p(x | θ) s.t. ||γn||0 ≤ s, ∀n

Here x is the data we wish to segment, D is the patch based dictionary, xu = Fux is

undersampled collected data.

The problem formulated above is non-convex, but by updating the optimization

variables independetly, the solution can be approximated. Therefore, albeit we are

not guarenteed that it will converge, we have saparated the global problem to three

local ones, that either are convex or can be sufficiently solved by a greedy method.

The idea is to alter the second term and potentially add more fitting regularization

terms to our dataset. The third term is a GMM term.


