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Teaser
There is a large statistical framework for analyzing

data in euclidean space. However, not all data can be

assumed to belong to a euclidean space. For anatom-

ical objects or shape data it is not possible to define

addition such that the full space of data points are

closed under this operation. Instead these kinds of

data are assumed to form a non-linear manifold, M.

The problem is that a lot of the statistical framework

that are already defined, are based on addition of dat-

apoints. Examples are average, variance and several

models such as regression. This means that we have

to come up with a new theory to be able to perform

statistical analysis on manifold valued data.

Our Goal
To define a regression model to describe the relation

between multiple covariate variables in Rm and a re-

sponse variable inM. An example could be to model

how a treatment x ∈ R affects the brain structure of

patients.

The Regression Model

Let M denote a d-dimensional manifold embedded in Rk, k ≥ d and Xα : Rd →
Ty0M be a frame for the tangent space at y0 ∈ M. We observe

i: n realisations of the response variable y ∈ M, y1, . . . , yn ∈ Rk

ii: and for each realisation yi, m covariate variables xi = (x1
i , . . . , xm

i ) ∈ Rm for

m ≥ 1.

Consider stochastic processes zi
t solving the stochastic differential equation,

dzi
t = β′tdt + WdXi

t + dεi
t, i = 1, . . . , n, (1)

in which β′tdt is a fixed drift, W is a m×m-matrix of coefficients, dXi
t is a brownian

bridge with Xi
0 = 0, Xi

1 = xi and εi
t is a brownian motion. Notice that the structure

of these processes are similar to a usual regression model, with a general effect

(β′tdt), a covariate dependency (WdXi
t) and an individual error term (dεi

t).

Based on the processes zi
t, we can define a relation between covariate variables

on Rm and the response variable on M. For each observation i, a sample of the

stochastic process zi
t are transported toM by stochastic development through the

frame bundle FM. Let Yi : Ω → M be a stochastic variable following the distri-

bution of the endpoints of the transported sample paths of zi
t. Each observation yi

is then modelled as

yi = Yi + νi (2)

where νi ∼ N (0, τ2I) denotes the measurement error in Rk.

Figure 1: Illustration of the basics of the model. ϕ denotes the stochastic development to the
frame bundle and π is a projection to the manifold.

Example
In the figures below we show an example of how

the model can be used for prediction. It is a sim-

ple example with a response variable y of triangles

represented by 3 landmarks. Assume we observe

two covariate variables, x1 = −2, x2 = 1 (The green

bullet in Figure (a)). We simulate 1000 processes zt

and transport them to M. In Figure (b) are shown

the end distribution for the transported processes for

each landmark. The blue triangle is the starting point

y0. Based on these end distributions, we are then

able to make predictions on y from the model. This

means that based on the measured covariates we can

predict an observation y. In Figure (c) is shown such

a prediction as the green triangle.
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(a) Simulated processes on Rm. The green lines
represents the Xt brownian bridgess and the blue are

the Zt processes. The green bullet point are the
covariate values.
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(b) The evolution of each landmark and their end
distribution. The blue triangle visualizes the initial

value y0 ∈ M.
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(c) The same picture as in Figure (b), with a prediction
of the triangle for the given covariate values.


