

Conv. Network for Segmentation of Mixed Crops

A. K. Mortensen¹, M. Dyrmann², H. Karstoft³, R. N. Jørgensen³ and R. Gislum¹

Aarhus University, Department of Agroecology ² University of Southern Denmark, Maersk Mc-Kinney Moller Institute ³ Aarhus University, Department of Engineering

. Problem:

- What?
 - Pixel-wise classification of top view images of mixed crops
- Why?
 - Yield estimation
 - Nitrogen-uptake estimation
 - Variable Nitrogen application to fields
 - Optimal harvest time

- Fine-tuning on a pre-trained Deep Convolutional Neural Network
 - Based on VGG-16D for image classification [1]
 - Adapted to pixel-wise classification [2]:
 - Convert fully connected layers to convolutional layers
 - Insert deconvolutional layer
 - First, fine-tuned on PASCAL-Context [2]
 - Then, fine-tuned on own data
- Data set
 - 48 images
 - 400 x 400 pixels
 - 75% used for training
 - 7 classes
 - Unknown, Radish, Barley/Grass, Weed, Stump, Soil Equipment
- Data argumentation to increase data set
 - Flip left/right, flip up/down and transpose
- Learning parameters
 - Learning rate: 10⁻⁹
 - Per pixel learning rate: ~1.6*10⁻⁴

3. Results:

- Pixel-wise classification:
- Pixel accuracy: 79 %
- Frequency weighted IoU: 66%
- Ensemble classification
- Pixel accuracy: 80 %
- Frequency weighted IoU: 67%

4. Discussion and conclusion:

- Works relatively well, but only tested on small labelled data set
- Large un-labelled dataset + small lalelled dataset → semisupervised learning?
 - How?
 - Auto-encoders?
 - Learning Noise model? [3]

5. References:

[1] Simonyan, K., & Zisserman, A. (2015). Very Deep Convolutional Networks for Large-Scale Image Recoginition. Intl. Conf. on Learning Representations (ICLR), 1–14. [2] Long, J., Shelhamer, E., & Darrell, T. (2015). Fully Convolutional Networks for Semantic Segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3431–3440.

[3] Sukhbaatar, S., Bruna, J., Paluri, M., Bourdev, L., & Fergus, R. (2014). Training Convolutional Networks with Noisy Labels, 1–10. Retrieved from http://arxiv.org/abs/ 1406.2080