
Auxiliary method 
We extend the variational distribution of deep generative models with 
auxiliary variables q(z,a) (cf. Fig. 3, 4). We demonstrate hat the marginal 
distribution of the variational approximation q(z) can fit more complicated 
posteriors (Agakov and Barber, 2004). In order to have an unchanged 
generative model, it is required that the joint mode p(x,z,a) gives back the 
original p(x,z) under marginalization over ‘a’, thus p(x,z,a) = p(a|x,z)p(x,z) 
(cf. Fig. 3). 

The lower bound of the auxiliary variational auto-encoder is defined as 

The stochastic variables are defined as in a normal variational auto-
encoder (Kingma et al., 2013; Rezende and Mohamed, 2014). 

For semi-supervised learning we represent the class label with a 
multinomial latent variable y. y can be explicitly marginalized when 
unobserved (cf. Fig. 4). The lower bound for the labeled data is 

The performance is improved by introducing an explicit classification loss 

The lower bound for the unlabelled data points is 

The objective function for the semi-supervised model is  

The SDGM has a slightly changed generative model compared to the 
ADGM, so that the auxiliary variable is now in p(x|a,z,y).
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Fig. 3: The unsupervised auxiliary variational auto-
encoder. The incoming connections to each 
variable are deep neural networks with parameters θ 
and φ. A) 1-layered inference model and B) 
corresponding generative model. C) 2-layered 
inference model and D) generative model.
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Fig. 4: The ADGM for semi-supervised learning. 
The incoming connections to each variable are 
deep neural networks with parameters θ and φ. A) 
Generative model and B) inference model.

Introduction 
We train deep generative models with multiple stochastic layers. The 
Auxiliary Deep Generative Models (ADGM) utilize an extra set of auxiliary 
latent variables to increase the flexibility of the variational distribution. We 
also introduce a slight change to the ADGM, a 2-layered stochastic model 
with skip connections, the Skip Deep Generative Model (SDGM). Both 
models are trainable end-to-end and offer state-of-the-art performance 
when compared to other semi-supervised methods. We demonstrate: 

(i) The auxiliary variable models can fit complex latent distributions. 
(ii) The ADGM utilizes the data manifold for semi-supervised classification. 

(iii) State-of-the-art results on end-to-end semi-supervised classification.

Table 2: Unsupervised test log-likelihood on permutation invariant 
MNIST for the normalizing flows VAE (VAE+NF), importance weighted 
auto-encoder (IWAE), variational Gaussian process VAE (VAE+VGP) and 
Ladder VAE (LVAE) with FT denoting the finetuning procedure from 
Sønderby et al. (2016), IW the importance weighted samples during 
training, and L the number of stochastic latent layers.

ELBO
VAE+NF, L=1 (Rezende and Mohamed, 2015) -85.10 
IWAE, L=1, IW=1 (Burda et al., 2015) -86.76 
IWAE, L=1, IW=50 (Burda et al., 2015) -84.78 
IWAE, L=2, IW=1 (Burda et al., 2015) -85.33 
IWAE, L=2, IW=50 (Burda et al., 2015) -82.90 
VAE+VGP, L=2 (Tran et al., 2015) -81.90 
LVAE, L=5, IW=1 (Sønderby et al., 2016) -82.12 
LVAE, L=5, IW=10. FT (Sønderby et al., 2016) -81.74 
Auxiliary VAE, L=1, IW=1 -84.59 
Auxiliary VAE, L=2, IW=1 -82.97 

MNIST 
100 labels

SVHN 
1000 labels

NORB 
1000 labels

M1+TSVM 11.82% (±0.25) 55.33% (±0.11) 18.79% (±0.05)
M1+M2 3.33% (±0.14) 36.02% (±0.10) -
VAT 2.12 % 24.63 % 9.88 %
Ladder Network 1.06% (±0.37) - -
ADGM 0.96% (±0.02) 22.86 % 10.06% (±0.05)
SDGM 1.32% (±0.07) 16.61% (±0.24) 9.40% (±0.04)
Table 1: Semi-supervised test error % benchmarks on MNIST, SVHN and NORB for randomly labeled and evenly distributed data 
points from Kingma et al., 2014, Miyato et al., 2015 and Rasmus et al., 2015. The lower section demonstrates the benchmarks of 
the contribution of this article.

Results 
We evaluate the generative performance of the unsupervised 
auxiliary model, AVAE, using the MNIST dataset. The inference 
and generative models are visualised in Fig. 3. We report the 
lower bound for 5000 importance weighted samples and use 
the same training and parameter settings as in Sønderby et al. 
(2016) with warm-up, batch normalization and 1 Monte Carlo 
and IW sample for training. Table 2 shows the results and even 
though they are not directly comparable it is evident that the 
auxiliary variational auto-encoder is outperforming a regular 
variational auto-encoder. 

In order to compare the ADGM and SDGM to other methods 
we evaluated the semi-supervised performance on the MNIST, 
SVHN and NORB datasets (cf. Table 1). The SDGM were 
generally much more stable in convergence and speed 
especially on Gaussian distributed observed data points.

Conclusion 
We have introduced a method for making the variational 
distributions used in deep generative models more expressive. 
We have demonstrated that the method gives state-of-the-art 
performance in a number of semi-supervised benchmarks and 
is trainable end-to-end.
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Fig. 1: We demonstrate that the auxiliary model can fit 
complicated posterior distributions for the latent space. To do this 
we consider one of the 2D potential models from Rezende and 
Mohamed, 2015. We also show how the auxiliary model 
captures the data manifold by applying the auxiliary variables, and 
thereby manages to distinguish between the half-moons. A) The 
approximation of the energy with two modes. The most frequent 
solution found in optimization is not the one shown, but one 
where the latent distribution fits only one of the two equivalent 
modes. B) A semi-supervised problem consisting of two classes/
half-moons and 6 labeled data points. C) The result of the ADGM 
fitting the two half-moons. D) The auxiliary latent space of a fully 
trained ADGM.

Fig. 2: SDGM trained on 100 labeled MNIST. 
PCA on the 1st and 2nd principal component 
of the auxiliary latent space.


