LOCALLY ORDERLESS REGISTRATION **OF DIFFUSION WEIGHTED IMAGES**

Jensen H. G.¹ (henne@di.ku.dk), Nielsen M.¹, Lauze F.¹, & Darkner S.¹

¹Image Group, Department of Computer Science, UCPH.

Abstract

Registration of Diffusion Weighted Images (DWI) is challenging as the data is a composition of both directional and intensity information. In this work, the density estimation framework for image similarity, Locally Orderless Registration, is extended to include directional information. We construct a spatio-directional scale-space formulation of marginal and joint density distributions between two DWI. We examine the scale-space and illustrate the approach by affine registration.

LOR

The LOR framework defines the similarity over 3 scales: The image scale, the intensity scale, and the integration scale.

Image scale

Given an image *I*, the first scale is the convolution with a kernel K_{σ} of standard deviation σ

$$I_{\sigma}(\mathbf{x}) = (I * K_{\sigma})(\mathbf{x}) = \int_{\Omega} I(\tau) K_{\sigma}(\mathbf{x} - \tau) d\tau$$
(1)

Figure 1: (Image scale) Examples of simple gaussian image smoothing

Intensity and integration scale

To align two images I_{α} and I_{α} (1) under a transformation ϕ , we write up their joint histogram h. The intensity scale is essentially the soft bin width β of the histogram while the integration scale is a Gaussian integration window used to create a local histogram around x with standard deviation α .

$$h_{\beta\alpha\sigma}(i,j|\phi,\mathbf{x}) = \int_{\Omega} \overbrace{P_{\beta}(I_{\sigma}(\phi(\mathbf{x})) - i)P_{\beta}(J_{\sigma}(\mathbf{x}) - j)}^{\text{Intensity scale}} \overbrace{W_{\alpha}(\tau - \mathbf{x})}^{\text{Integration scale}} d\tau$$
(2)

Here P_{β} is a Parzen-window, and W_{α} is a Gaussian integration window. This is a scale-space representation of intensity distributions in images and lets us use a set of generalized linear and non-linear similarity measures, such as Mutual Information (MI).

Figure 2: (Integration scale) Illustration of local integration

Figure 3: (Intensity scale) Examples of isophotes (i.e. bins in the histogram). 3a illustrates 3 bins while 3b shows the effect of smoothing a bin.

LOR-DWI

DWI are highly sensitive so invariant similarity measures (e.g. MI) are attractive. However, density estimation is complicated by directional information.

Adding the orientation scale

We get an orientational scale by adding an antipodally symmetric kernel Γ_{κ} , and substitute the image model in (1) to encompass a vector v on the spherical domain S^2

 $I_{\sigma\kappa}(\mathbf{x}, \mathbf{v}) = (I * (K_{\sigma} \otimes \Gamma_{\kappa}))(\mathbf{x}, \mathbf{v})$

 $= \int_{S^2} \left(\int_{\Omega} I(\tau, \nu) K_{\sigma}(\tau - \mathbf{x}) d\tau \right)^{\text{Orientation scale}} \widetilde{\Gamma_{\kappa}(\nu, \nu)} d\nu \quad (3)$ We set Γ_{κ} to be a Watson distribution with concentration parameter κ .

Figure 4: (Orientation scale) Example of a Watson distribution of varying support

Now, let $\phi(x)$ be a diffeomorphic transformation of a point x, $\psi(\nu) = \frac{d\phi(\nu)}{|d\phi(\nu)|}$ be a derformation of the orientation ν (based on the Jacobian of ϕ), and the overall transformation be $\tilde{\Phi} : (x, \nu) \mapsto$ $(\phi(x), \psi(v))$. Updating the formulation of (2) with (3), we get the joint histogram

$$h_{\beta\alpha\sigma\kappa}(i, j | \bar{\Phi}, \mathbf{x}) = (4)$$

$$\int_{\Omega \cup \mathcal{O}^{2}} P_{\beta}(I_{\sigma\kappa}(\phi(\mathbf{x}), \psi(\mathbf{v})) - i) P_{\beta}(J_{\sigma\kappa}(\mathbf{x}, \mathbf{v}) - j) W_{\alpha}(\tau - \mathbf{x}) d\tau \times d\mathbf{v}$$

Рваск

and from this, the normalized density estimate

$$(i, j | \bar{\Phi}, \mathbf{x}) \approx \frac{h_{\beta \alpha \sigma \kappa}(i, j | \Phi, \mathbf{x})}{\int_{\Lambda^2} h_{\beta \alpha \sigma \kappa}(i, j | \bar{\Phi}, \mathbf{x}) dl dk}$$

(4)

(5)

The marginal probabilities are trivially derived, and from this we can use linear (sum of squared differences, Huber, ...) and non-linear measures (MI, NMI, ...) for image registration.

Figure 5: 2D illustration of a vector in a DWI shell (subject 1) being comred with another shell (subject 2). We calculate the derivatives of the feomorphic transformation w.r.t. the similarity over the smoothed scale spaces

Experiments & Results

We performed a non-rigid registration of 2 high angular DWI scans (HARDI) from the Human Connectome Project (single shell, b=1000). We show that, even without any regularization term, the inherent information in the micro-structure adds its own regularization. The acquired DWI were pre-registered spatially to an MNI152 template, no global affine transformation was performed, and 30 (out of 90) gradient directions were used. Below, Figure 6 and 7 show an axial and a coronal slice from the registration. The images are the interpolated mean diffusivity.

Figure 6: Interpolated mean diffusivity (axial slice). To the right (Subject 1) is the source image that the left target image (Subject 3) is registered to. The center image shows the non-rigid transformation of the target image.

Figure 7: Interpolated mean diffusivity (coronal slice). Same as in Figure 6

Benefits of LOR-DWI?

We extended the LOR density estimation framework to DWI. Our LOR-DWI framework allows us

- Explicit control over the 4 scales of DWI (image scale, intensity scale, integration scale, and orientation scale).
- The scale-space formulation enables us to
- Compare DWI across different resolutions.

By adding a symmetric kernel on the sphere and including the first-order information of the diffeomorphic deformation, we

• Account for the local geometrical transformation prior to modelling the distribution.

Invariant similarity measures a key to handling the sensitive DWI scans and using our framework we can

• Project complex DWI structures down to a 2D density estimate that enables the use of well-defiend similarity measures, such as Mutual Information.

igure 8: Illustration of two complex DWI structures projected down to a D histogram (density estimate) using LOR-DWI.