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Abstract

Registration of Diffusion Weighted Images (DWI) is challenging
as the data is a composition of both directional and intensity in-
formation. In this work, the density estimation framework for im-
age similarity, Locally Orderless Registration, is extended to in-
clude directional information. We construct a spatio-directional
scale-space formulation of marginal and joint density distribu-
tions between two DWI. We examine the scale-space and illus-
trate the approach by affine registration.

LOR

The LOR framework defines the similarity over 3 scales: The im-

age scale, the intensity scale, and the integration scale.

Image scale
Given an image I, the first scale is the convolution with a kernel
Ks of standard deviation s

Is(x) = (I ⇤ Ks)(x) =
Z

W
I(t)Ks(x � t)dt (1)

(a) Original image (b) Smoothed image

Figure 1: (Image scale) Examples of simple gaussian image smoothing.

Intensity and integration scale
To align two images Is and Js (1) under a transformation f, we
write up their joint histogram h. The intensity scale is essentially
the soft bin width b of the histogram while the integration scale is
a Gaussian integration window used to create a local histogram
around x with standard deviation a.

hbas(i, j|f, x) =
Z

W

Intensity scalez }| {
Pb(Is(f(x))� i)Pb(Js(x)� j)

Integration scalez }| {
Wa(t � x) dt

(2)

Here Pb is a Parzen-window, and Wa is a Gaussian integration
window. This is a scale-space representation of intensity distri-
butions in images and lets us use a set of generalized linear and
non-linear similarity measures, such as Mutual Information (MI).

(a) Illustration of a local histogram (b) Histogram of (top) smoothed image in Fig. 1a and
(bottom) local integration of 2a.

Figure 2: (Integration scale) Illustration of local integration.

(a) Example of 3 isophotes (b) Soft isophote (red line in a)

Figure 3: (Intensity scale) Examples of isophotes (i.e. bins in the histogram).
3a illustrates 3 bins while 3b shows the effect of smoothing a bin.

LOR-DWI
DWI are highly sensitive so invariant similarity measures (e.g.
MI) are attractive. However, density estimation is complicated
by directional information.

Adding the orientation scale
We get an orientational scale by adding an antipodally symmetric
kernel Gk, and substitute the image model in (1) to encompass a
vector n on the spherical domain S2

Isk(x, v) =(I ⇤ (Ks ⌦ Gk))(x, v)

=
Z

S2

✓Z

W
I(t, n)Ks(t � x)dt

◆Orientation scalez }| {
Gk(n, v) dn (3)

We set Gk to be a Watson distribution with concentration param-
eter k.

Figure 4: (Orientation scale) Example of a Watson distribution of varying
support.

Now, let f(x) be a diffeomorphic transformation of a point x,
y(n) = df(n)

|df(n)| be a derformation of the orientation n (based on
the Jacobian of f), and the overall transformation be F̃ : (x, n) 7!
(f(x), y(n)). Updating the formulation of (2) with (3), we get the
joint histogram

hbask(i, j|F̃, x) = (4)
Z

W⇥S2
Pb(Isk(f(x), y(v))� i)Pb(Jsk(x, v)� j)Wa(t � x)dt ⇥ dv

and from this, the normalized density estimate

pbask(i, j|F̃, x) ⇡
hbask(i, j|F̃, x)

R
L2 hbask(i, j|F̃, x)dl dk

(5)

The marginal probabilities are trivially derived, and from this
we can use linear (sum of squared differences, Huber, . . . ) and
non-linear measures (MI, NMI, . . . ) for image registration.

Φ : (x, ν) �→ (φ(x), ψ(ν))
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Figure 5: 2D illustration of a vector in a DWI shell (subject 1) being com-
pared with another shell (subject 2). We calculate the derivatives of the
diffeomorphic transformation w.r.t. the similarity over the smoothed scale
spaces.

Experiments & Results

We performed a non-rigid registration of 2 high angular DWI
scans (HARDI) from the Human Connectome Project (single
shell, b=1000). We show that, even without any regularization
term, the inherent information in the micro-structure adds its
own regularization. The acquired DWI were pre-registered spa-
tially to an MNI152 template, no global affine transformation
was performed, and 30 (out of 90) gradient directions were used.
Below, Figure 6 and 7 show an axial and a coronal slice from the
registration. The images are the interpolated mean diffusivity.

Subject 1 Subject 3 deformed, 6  = 0

HALFRES ; DFieldSpacing 10 ; 5 = 20
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Figure 6: Interpolated mean diffusivity (axial slice). To the right (Subject 1)
is the source image that the left target image (Subject 3) is registered to. The
center image shows the non-rigid transformation of the target image.

Subject 1 Subject 3 deformed, 6  = 0

HALFRES ; DFieldSpacing 10 ; 5 = 20

Subject 3

Figure 7: Interpolated mean diffusivity (coronal slice). Same as in Figure 6.

Benefits of LOR-DWI?
We extended the LOR density estimation framework to DWI. Our
LOR-DWI framework allows us

• Explicit control over the 4 scales of DWI (image scale, inten-
sity scale, integration scale, and orientation scale).

The scale-space formulation enables us to

• Compare DWI across different resolutions.

By adding a symmetric kernel on the sphere and including the
first-order information of the diffeomorphic deformation, we

• Account for the local geometrical transformation prior to
modelling the distribution.

Invariant similarity measures a key to handling the sensitive
DWI scans and using our framework we can

• Project complex DWI structures down to a 2D density es-
timate that enables the use of well-defiend similarity mea-
sures, such as Mutual Information.
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Figure 8: Illustration of two complex DWI structures projected down to a
2D histogram (density estimate) using LOR-DWI.


