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RADIOGENOMICS
learning GENOMIC CLASSES based on IMAGE FEATURES

Esther Alberts, Benedikt Wiestler, Bjoern H. Menze
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Three common radiogenomics approaches
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Fig. 1: Data available for each patient: MR images, tumor segmentations and genetic subclass.

Computer Aided Diagnosis – our application

Radiogenomics – What are we learning?
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Feature extraction – Quantifying texture

1. Spherical sampling: get neighbours
2. Create a neighbourhood function by:
• 0: neighbour intensity < center intensity
• 1: neighbour intensity > center intensity

3. Get frequency components of spherical harmon-
ics for the neighbourhood function

Fig. 2: Spherical harmonics (order 1-4).

Feature generation
Using the training set:

1. Calculate LBPs for all tumor voxels
2. Learn n common patterns

⇓
In the test set:

cluster LBPs towards the n learned patterns

generated feature
= frequency of the n patterns

in the new image

Fig. 3: Learnt texture patterns (n = 25).

Fig. 4: LBP clustering of tumor voxels.

I. Supervised learning by 3D Linear Binary Patterns

An auto-encoder is defined by encoder
φ and decoder ψ transformations:

φ : x ∈ Rd → z ∈ Rp (1)

ψ : z ∈ Rp→ x ∈ Rd (2)
Here, p << d, in order to get a
compressed feature representation.
The transformations φ and ψ are learnt
through a minimisation problem:

argmin
φ,ψ

||x− (ψ ◦ φ)x||2 (3)
Encoder φ 1 Decoder ψ 2

II. Unsupervised learning by auto-encoder

Difficult classification task – human raters cannot differentiate

CIMP codel CIMP non-codel CIMP neg

Fig. 5: Prediction results using LBP, HOG and auto-encoder features from T1, T1 gad, T2 and FLAIR.

We are looking for relations. In other words, we don’t know how well the best possible classifier
would perform!

•Only 117 patients (= 117 labels)
• Every patient has 4 images (T1, T1 gad, T2 and FLAIR)
•Over 500 features per image
•⇒ over 2000 features per label!

Main problem: Curse of dimensionality

• Smart feature selection to reduce dimension
•Patch-based deep learning approach to increase samples
• Testing on other datasets and other labels to look for more obvious relations
• Investigate specialized classifiers
• Add genetical metadata
• Look into semisupervised learning techniques

Next steps

Classifiers – when p<<n . . .
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