A probabilistic model for segmenting

EEG into microstates

Frans Zdyb

Supervisors: Lars Kai Hansen, Andreas Trier Poulsen

‘ Abstract |

EEG exhibits states during which the spatial map of electric
potential changes little, until it rapidly morphs into a differ-
ent map. Called "microstates”, they are thought to reflect
states of mental processing. To infer microstates from noisy
recordings, researchers have used modified clustering al-
gorithms. This work presents a probabilistic model for infer-
ring microstates using variational inference. The results are
competitive with commonly used tools.

1. Introduction |

Y placing electrodes on the scalp, and recording the

fluctuating differences in electric potential between
them, one can get a measure of brain activity that is non-
invasive and has a high temporal resolution. Because of
these properties, EEG is used extensively in the brain and
mind sciences, and in medicine.
Good explanations of brain activity must employ repre-
sentations of the EEG signal that make the studied phe-
nomenon easily quantifiable in terms of those representa-
tions.

One way of representing EEG is as a sequence of
microstates[2]. The EEG recording is segmented into peri-
ods of coherent synchronized activation of large-scale neu-
ronal networks, characterized by a unique topography of
electric potentials over the entire channel array. An exam-
ple of a microstate segmentation is in Figure 1.
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(a) 0.8 seconds of EEG from 128 electrodes,
sampled at 2048 Hz, averaged over 172 epochs, (b) corre-
lation between any two scalp maps, (c¢) spatial components
of a segmentation into two microstates, (d) temporal com-
ponents of the same segmentation

Figure 1:

Studies have discovered significant changes in the mi-
crostate sequence in a variety of neuropsychiatric disor-
ders and behavioral states[2]. CARTOOL, a piece of soft-
ware for functional brain mapping, implements two algo-
rithms for microstate segmentation[4]. One is a modified
agglomerative clustering, the other a k-means, modified to
be scale-invariant, called "N-microstates”[1]. N-microstates
assumes the same model that forms the basis of this work.

‘ 2. Model |

The N-microstates model expresses each time-frame in the
recording as one of K spatial maps, scaled with some in-
tensity, plus some Gaussian noise.
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where

j € {1..J} = channel,

t e {1..T} =time,

k € {1..K'} = microstate,

yjt = voltage,

wji, = spatial component of microstate £,
r1., = temporal component of microstate «,
21+ = binary indicator of microstate k«,

ejt ~ N(0, 871
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This model is a hard clustering due to the prior structure on
the indicator variables.

2przpy = 0,k # K

To encourage clustering subsequent frames into the same
microstate, we add an assumption of temporal smoothness.
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‘ 3. Inference |

The naive approach to inferring the model parameters is to
compute and maximize the marginal log-likelihood.
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where
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This is intractable. Instead, we do variational inference, in-
spired by [3].

1) We introduce the variational distributions that approxi-
mate the priors p(X) and p(Z), ¢(X|p, ¥?) and ¢(Z),
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2) use Jensen’s inequality to obtain a lower bound on the
marginal log-likelihood,
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and 3) minimize — F' using block-coordinate descent.
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4. Resulis |

To compare N-microstates to the variational version of it, we
simulate a sequence of randomly generated microstates,
and compute the mutual information between the inferred
sequence z;; and the simulated one. We restart both al-
gorithms with random initialization 40 times, to mitigate
bad local minima. We repeat the procedure 50 times each
for a range of signal-to- n0|se ratlos In the range O- 10 dB
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Figure 2: Mean +3sd of 50 best-out-of-40-restarts mutual
information between the true segmenation and segmenta-
tions estimated by Variational Microstates without smooth-
ing (red), with smoothing (green) and N-microstates (blue),
as a function of SNR. Higher curves are for K = 7, lower for
K = 4. Higher is better, best possible mutual information is

the entropy of the true segmentation, H(Zyye) = 2.54

Both algorithms are implemented in an extension for the
MATLAB-toolbox EEGLABI9],
at https://github.com/deoxyribose/microstates.

‘ References |

[1] Pascual-Marqui, Roberto D and Michel, Christoph M and
Lehmann, Dietrich Segmentation of brain electrical ac-
tivity into microstates: model estimation and validation
Biomedical Engineering, IEEE Transactions on, volumne
42, number 7, pages 658—665, 1995

[2] Arjun Khanna and Alvaro Pascual-Leone and Christoph
M. Michel and Faranak Farzan Microstates in resting-
state EEG: Current status and future directions Neuro-
science & Biobehavioral Reviews, volumne 49, number
0, pages 105-113, 2015

[3] Kappen, Hilbert J and Gomez, Vicen¢ The variational
garrote  Machine Learning, volumne 96, number 3,
pages 269—-294, 2014

[4] Denis Brunet, Micah M. Murray, and Christoph M.
Michel Spatiotemporal Analysis of Multichannel EEG:
CARTOOL  Computational Intelligence and Neuro-
science, Volume 2011, Article ID 813870, 15 pages
doi:10.1155/2011/813870

[5] Delorme, Arnaud and Makeig, Scott EEGLAB: an open
source toolbox for analysis of single-trial EEG dynamics

iIncluding independent component analysis Journal of

neuroscience methods, volume 134, number 1, pages
9-21, 2004



