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Abstract

EEG exhibits states during which the spatial map of electric
potential changes little, until it rapidly morphs into a differ-
ent map. Called ”microstates”, they are thought to reflect
states of mental processing. To infer microstates from noisy
recordings, researchers have used modified clustering al-
gorithms. This work presents a probabilistic model for infer-
ring microstates using variational inference. The results are
competitive with commonly used tools.

1. Introduction

BY placing electrodes on the scalp, and recording the
fluctuating differences in electric potential between

them, one can get a measure of brain activity that is non-
invasive and has a high temporal resolution. Because of
these properties, EEG is used extensively in the brain and
mind sciences, and in medicine.
Good explanations of brain activity must employ repre-
sentations of the EEG signal that make the studied phe-
nomenon easily quantifiable in terms of those representa-
tions.
One way of representing EEG is as a sequence of
microstates[2]. The EEG recording is segmented into peri-
ods of coherent synchronized activation of large-scale neu-
ronal networks, characterized by a unique topography of
electric potentials over the entire channel array. An exam-
ple of a microstate segmentation is in Figure 1.
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Figure 1: (a) 0.8 seconds of EEG from 128 electrodes,
sampled at 2048 Hz, averaged over 172 epochs, (b) corre-
lation between any two scalp maps, (c) spatial components
of a segmentation into two microstates, (d) temporal com-
ponents of the same segmentation

Studies have discovered significant changes in the mi-
crostate sequence in a variety of neuropsychiatric disor-
ders and behavioral states[2]. CARTOOL, a piece of soft-
ware for functional brain mapping, implements two algo-
rithms for microstate segmentation[4]. One is a modified
agglomerative clustering, the other a k-means, modified to
be scale-invariant, called ”N-microstates”[1]. N-microstates
assumes the same model that forms the basis of this work.

2. Model

The N-microstates model expresses each time-frame in the
recording as one of K spatial maps, scaled with some in-
tensity, plus some Gaussian noise.

yjt =
∑
k

wjkxktzkt + εjt (1)

where

j ∈ {1..J} = channel,
t ∈ {1..T} = time,

k ∈ {1..K} = microstate,
yjt = voltage,

wjk = spatial component of microstate k,
xkt = temporal component of microstate k,

zkt = binary indicator of microstate k,
εjt ∼ N(0, β−1)

xkt ∼ N(µkt, α)

pk(zkt = 1) =
1

K
This model is a hard clustering due to the prior structure on
the indicator variables.

zktzk′t = 0,∀k 6= k′

To encourage clustering subsequent frames into the same
microstate, we add an assumption of temporal smoothness.

P (Zt|Zt−1) =
∏
t

∏
k

(
(p0 −

1− p0

K − 1
)zktzk t−1 +

1− p0

K − 1

)

3. Inference

The naive approach to inferring the model parameters is to
compute and maximize the marginal log-likelihood.

L = ln p(Y|W) = ln

∫
p(Y|W,X,Z)p(X)p(Z)dXdZ

where

pk(zkt) =

(
1

K

)zkt
, p(Z) =

T∏
t

K∏
k

pk(zkt)

p(xkt) = N (xkt|0, α2), p(X) =

T∏
t

K∏
k

p(xkt)

This is intractable. Instead, we do variational inference, in-
spired by [3].
1) We introduce the variational distributions that approxi-
mate the priors p(X) and p(Z), q(X|µµµ,Σ2) and q(Z),

q(X|µµµ,Σ2) =

T∏
t

K∏
k

N (xkt|µkt, σ2
kt)

q(Z) =

T∏
t

K∏
k

mzkt
kt ,
∑
k

mkt = 1

2) use Jensen’s inequality to obtain a lower bound on the
marginal log-likelihood,

F (wjk,mkt, µkt, σ
2
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
and 3) minimize −F using block-coordinate descent.

arg min
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4. Results

To compare N-microstates to the variational version of it, we
simulate a sequence of randomly generated microstates,
and compute the mutual information between the inferred
sequence zkt and the simulated one. We restart both al-
gorithms with random initialization 40 times, to mitigate
bad local minima. We repeat the procedure 50 times each
for a range of signal-to-noise ratios in the range 0-10 dB.

Figure 2: Mean ±3sd of 50 best-out-of-40-restarts mutual
information between the true segmenation and segmenta-
tions estimated by Variational Microstates without smooth-
ing (red), with smoothing (green) and N-microstates (blue),
as a function of SNR. Higher curves are for K = 7, lower for
K = 4. Higher is better, best possible mutual information is
the entropy of the true segmentation, H(Ztrue) = 2.54

Both algorithms are implemented in an extension for the
MATLAB-toolbox EEGLAB[5],
at https://github.com/deoxyribose/microstates.
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