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Overview

• A semi-supervised extension of the supervised classifi-
cation method sparse-LDA [3] using a regularizer similar
to [1], motivated from spectral dimensionality reduction.
• Experimental results on the mnist data set [4] to evalu-

ate the gain of adding unlabelled samples.
• Experimental results on the ECG part of the UCR time-

series data set [2].
• Brief analysis on the added runtime.

Introduction

LDA is a method used for supervised classification and a sparse
version of it, using an l1-norm on the parameters was published
in 2011 [3]. Sparse-LDA is a very flexible method, since it can
handle the p >> n case and multiple classes. It also provides
a low dimensional embedding of the data, optimized for class
separation, that due to the nature of the l1-norm provides model-
selection on the parameters, that can further give interpretational
insights on the data. Given a n× p data-matrix X and an n× K
indicator matrix Y for class membership, the sparse-LDA algo-
rithm works by solving the sparse optimal scoring problem:

arg min
θ∈RK, β∈Rp

‖Yθ− Xβ‖2︸ ︷︷ ︸
Optimal Scoring

+λ‖β‖1︸ ︷︷ ︸
Sparse OS

s.t. 1
nθTYTYθ = 1, θTYTYθ` = 0 ∀` < k,

(1)

Here, n is the number of data-samples, p is the number of fea-
tures and K is the number of different classes. We seek to find
the sparse βi, i ∈ {1, ..., K− 1}, discriminant vectors. These vec-
tors are used to project the data into a lower dimensional space,
at most K − 1-dimension, where data-points are classified ac-
cording to the nearest centroid.

The optimization problem 1 was initially solved in [3] using a
block-update scheme for the (θ, β) pairs. The θ scoring vectors
can be found with a closed form solution, but the β discriminant
vectors were found using least angle regression. The optimiza-
tion has been improved with other methods that are yet to be
published.

Here we explore adding yet another regularization term that can
aid when we have unlabelled samples. Results on a couple of
data examples are shown with some empirical results. We also
explore the overhead in computation.

Method

The method is an extension of [1]. To leverage unlabelled sam-
ples we have to make some assumptions. The main assumption
for semi-supervised learning is that:

Nearby samples are similar, and more likely to belong to the
same class.

The keypoint for this semi-supervised extension is to add a regu-
larization term that encodes the similarity of the additional sam-
ples, thus leveraging the similarity to get a better classification.

Constructing the regularization term

We begin by defining the p-nearest neighbour graph G of the
data x1, x2, ..., xn, xn+1, ..., xm, where the first n points have la-
bels, and the rest have none. p is an integer parameter that
controls the connectivity of the graph. Points xi and xj are said
to be neighbours, and connected with an edge in G, if either is
one of the p closest points to the other one. We denote Np(xi) as
the set containing the p closest points to xi in G. The adjacency
matrix A for G can then be defined as:

Aij =

{
1, if xi ∈ Np(xj) or xj ∈ Np(xi)

0, otherwise

Now we have encoded the similarity of the points. A natural re-
quest for the regularization term is to make points that are con-
sidered neighbours remain as close as possible after the projec-
tion with the discriminant vectors. Thus we define the additional
regularization term as:

J(β) = ∑
ij
(xiβ− xjβ)

2Aij

This term can be represented in matrix notation as

J(β) = 2βTXTLXβ,

where L is the graph Laplacian, L = D − A, where D is
the degree matrix. We refer to J(β) as the semi-supervised-
regularizer.

This idea for this regularization term comes from spectral and
graph-based clustering [5]. The optimization is similar to having
the elastic net penalty instead of only the l1-norm in the opti-
mal scoring formulation. The elastic net peanlty adds a ridge
regularization term, but it can also be defined with an arbitrary
coefficient matrix. In our case, that matrix is W = XTLX. So
given that we can solve the sparse optimal scoring problem with
an elastic net regularizer, the only added computation is the cre-
ation of the elastic net coefficient matrix W .

Added time complexity

The time-complexity of the computation of L is the same as ap-
plying k-nearest neighbour to the data set, which is O(nk + np).
Afterwards, it is a matter of storing the matrix, which is of size
p × p, which can lead to a large memory footprint if p is very
large.

Experimental setup

To evaluate the method we examine the performance on two
data sets, the mnist data set of handwritten digits [4] and ECG
data from the UCR time series classification archive [2].

Mnist

For evaluation we use fixed parameters for the number of neigh-
bours (k = 5) and regularization parameter for the l1-norm
(λ = 10−3), this is to achieve approximately 75 percent zeroes in
each discriminant vector. We vary the number of labelled sam-
ples from 2 to 50 and the number of unlabelled samples as 10,
100 and 200. We run each experiment 50 times and report mean
accuracy on the entire test data set with 30000 examples. The
samples used for the training are randomly sampled from the
training set. The data is normalized prior to training by subtract-
ing the mean and applying unit scaling. The mnist images are of
size 28× 28 so p = 784. Examples of the mnist digits can been
seen in figure 1.

Fig. 1. Examples of digits from the mnist data set.

ECG data

The ECG data consists of ECG time series with p = 136 mea-
surements per series. There are two classes and in the training
data there are n = 23 samples. We train the semi-supervised
method with 2 to 9 samples for each class and use the rest
as unlabelled samples. The evaluation is done on a test set
of 861 samples. The l1-norm regularizer parameter is set to
λ = 5 · 10−4, yielding approximately 100 zeroes in the discrimi-
nant vector. The norm parameter for the neighbourhood similar-
ity norm is 0.005 with k = 3. An example of a ECG time seried
can be seen in figure 2..

Fig. 2. Examples of an ECG signal.

Results

The results are summarized in figures 3.,4. and 5. There is
no-crossvalidation done on the other regularization parameters.
That is needed to give this subject a full treatment. There are
clear differences between the 2-class and 10-class cases. There
is a very slight improvemnt for the mnist data-set and the im-
provement is more dramatic for the ECG-data. We can conclude
that it helps to have the unlabelled samples.

Fig. 3. Comparison of using the graph similarity regularizer and
not on the mnist data set, with varying number of labelled and
unlabelled samples.

Fig. 4. Comparison of using the graph similarity regularizer and
not on the ECG data set, with varying number of labelled and
unlabelled samples.

Fig. 5. The semi-supervised-regularization matrix. On the left
we have the matrix for the mnist data-set, which seems to en-
code spatial similarity. On the right we see the matrix for the
ECG data set, which encodes temporal similarity along with fea-
tures that should be similar further a part in the time-domain.
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